solutions.handling
¶
This module provides the core logic for evaluating, validating, and comparing solutions
within the afccp
framework. It includes comprehensive tools for computing cadet and AFSC value
scores, applying VFT constraints, and generating solution diagnostics for use in optimization,
genetic algorithms, and post-hoc analysis.
Contents¶
- Solution Evaluation
evaluate_solution
: Evaluate a proposed solution (matrix/vector) against AFCCP objectives.fitness_function
: Calculate the scalar fitness score for use in meta-heuristics.
- Metrics and Constraint Evaluation
calculate_objective_measure_matrix
: Compute objective measures across cadets/AFSCs.calculate_failed_constraint_metrics
: Annotate constraint violations for debugging.value_function
,value_function_points
: Calculate piecewise linear VFT scores.
- Additional Metrics
calculate_additional_useful_metrics
: Compute fairness, choice rank, gender/race equity, utility scores.calculate_base_training_metrics
: Integrate base/training preference satisfaction.calculate_castle_solution_metrics
: Evaluate CASTLE-specific value curves and GUO tradeoffs.calculate_ots_specific_metrics
: Add OTS-specific merit and preference analytics.
- Stability and Comparison
calculate_blocking_pairs
: Identify cadetβAFSC blocking pairs based on stable matching criteria.compare_solutions
: Measure assignment similarity between twoj_array
vectors.similarity_coordinates
: Use multidimensional scaling (MDS) to visualize solution clusters.
- Rated SOC Integration
incorporate_rated_results_in_parameters
: Lock matched/reserved cadets from SOC rated algorithms.augment_rated_algorithm_results
: Expand alternate lists and enforce USAFA/ROTC rated constraints.
Workflow¶
- Evaluation of a Solution
- Construct
x
,j_array
, andafsc_array
. - Calculate AFSC/cadet utility values and objective scores.
- Apply value functions and check for failed constraints.
- Compute global metrics:
z
,z^gu
, blocking pairs, Simpson diversity, and match quality.
- Construct
- Constraint Handling
- Differentiate between hard and soft constraints (AFSC value floors, cadet preference thresholds).
- Track failed constraints using
objective_constraint_fail
andcon_fail_dict
.
- Post-Evaluation Analysis
- Calculate Simpson indices (race/ethnicity), choice distributions, and demographic breakdowns.
- Decompose metrics by SOC, gender, service branch (USSF/USAF), and AFSC.
- Solution Comparison
- Visualize solution similarity with MDS or compute
compare_solutions
overlap %. - Count and list blocking pairs to assess matching stability.
- Visualize solution similarity with MDS or compute
- Integration with SOC-Rated Workflows
- Lock rated matches/reserves and update alternate lists.
- Define alternate eligibility (hard/soft), preference sets, and blocking pair-safe configurations.
See Also¶
afccp.solutions.algorithms
: Contains the matching and meta-heuristic algorithms whose outputs are evaluated here.afccp.data.preferences
: Helper functions to compute cadet and AFSC preferences, including rated eligibility sets.
evaluate_solution(solution, parameters, value_parameters, approximate=False, re_calculate_x=True, printing=False)
¶
Evaluate a solution (either a vector or a matrix) by calculating various metrics.
Parameters: solution (numpy.ndarray): The solution to evaluate, represented as a vector or a matrix. parameters (dict): The fixed cadet/AFSC model parameters. value_parameters (dict): The weight/value parameters. approximate (bool, optional): Whether the solution is approximate or exact. Defaults to False. re_calculate_x (bool, optional): If we want to force re-calculation of x as integer matrix. Defaults to True. printing (bool, optional): Whether to print the evaluated metrics. Defaults to False.
Returns: solution (dict): A dictionary containing the solution core elements and evaluated metrics.
Note: This function evaluates a solution by calculating various metrics, including objective measures, objective values, AFSC values, cadet values, constraint failures, overall values, and additional useful metrics.
Source code in afccp/solutions/handling.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
fitness_function(chromosome, p, vp, mp, con_fail_dict=None)
¶
Evaluates a chromosome (solution vector) and returns its fitness score.
Parameters: chromosome (array-like): The chromosome representing the solution vector. p (dict): Parameters used in the calculations. vp (dict): Value parameters used in the calculations. mp (dict): Model parameters. con_fail_dict (dict, optional): Dictionary to store failed constraints for efficient evaluation. Defaults to None.
Returns: fitness_score (float): The fitness score of the chromosome.
Note: This function is relatively time-consuming and should be as efficient as possible. The fitness score is calculated based on the provided chromosome and parameters.
Source code in afccp/solutions/handling.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
|
calculate_blocking_pairs(parameters, solution, only_return_count=False)
¶
Calculate blocking pairs in a given solution.
Parameters: - parameters (dict): The parameters of the matching problem. - solution (dict): The current matching solution. - only_return_count (bool): If True, return the count of blocking pairs; if False, return the list of blocking pairs.
Returns: - blocking_pairs (list or int): A list of blocking pairs (or count of blocking pairs).
Description: This function calculates the blocking pairs in a given matching solution based on the stable matching community's definition. A blocking pair consists of an unmatched cadet and a more preferred AFSC that is also unmatched or assigned to a cadet with lower preference.
Parameters Dictionary Structure: - 'cadet_preferences': An array representing cadet preferences. - 'a_pref_matrix': A matrix of AFSC preferences. - 'J': The set of all AFSCs. - 'M': A special symbol representing an unmatched cadet.
Solution Dictionary Structure: - 'j_array': An array representing the assignment of AFSCs to cadets.
Dependencies: - NumPy
Reference: - Gale, D., & Shapley, L. S. (1962). College Admissions and the Stability of Marriage. American Mathematical Monthly, 69(1), 9-15.
Source code in afccp/solutions/handling.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
value_function(a, f_a, r, x)
¶
Calculates the AFSC objective value based on the provided parameters.
Parameters: a (array-like): Measure at each breakpoint. f_a (array-like): Value at each breakpoint. r (int): Number of breakpoints. x (float): Actual AFSC objective measure.
Returns: value (float): AFSC objective value.
Note: This function finds the appropriate breakpoint based on the measure and calculates the objective value using linear interpolation.
Source code in afccp/solutions/handling.py
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
|
value_function_points(a, fhat)
¶
Takes the linear function parameters and returns the approximately non-linear coordinates
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a |
function breakpoints |
required | |
fhat |
function breakpoint values |
required |
Returns:
Type | Description |
---|---|
x, y |
Source code in afccp/solutions/handling.py
499 500 501 502 503 504 505 506 507 508 |
|
calculate_afsc_norm_score(cadets, j, p, count=None)
¶
Calculate the Normalized Score for an AFSC assignment.
Parameters: - cadets (list or numpy.ndarray): A list of cadets assigned to the AFSC. - j (int): The index of the AFSC for which the score is calculated. - p (dict): The problem parameters including preferences and AFSC data. - count (int, optional): The number of cadets assigned to the AFSC. If not provided, it is calculated from the length of the 'cadets' list.
Returns: - norm_score (float): The normalized score for the AFSC assignment, ranging from 0 to 1.
Description: This function calculates the normalized score for an assignment of cadets to an AFSC. The score reflects how well the cadets are matched to their preferences for the given AFSC. A higher score indicates a better match, while a lower score suggests a less favorable assignment.
The calculation involves comparing the achieved score (sum of cadet preferences) to the best and worst possible scores for the AFSC assignment. The result is then normalized to a range between 0 and 1, with 1 being the best possible score and 0 being the worst.
Parameters Dictionary Structure: - 'a_pref_matrix': A matrix of AFSC preferences. - 'num_eligible': A dictionary with the number of eligible cadets for each AFSC.
Dependencies: - NumPy
Returns: - norm_score (float): The normalized score for the AFSC assignment, ranging from 0 to 1.
Source code in afccp/solutions/handling.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
|
calculate_afsc_norm_score_general(ranks, achieved_ranks)
¶
Calculate the Normalized Score for an AFSC assignment using custom ranks.
Parameters: - ranks (numpy.ndarray): An array containing the preference ranks for eligible cadets for the specific AFSC. - achieved_ranks (numpy.ndarray): An array of achieved ranks, indicating the ranks at which cadets were assigned to the AFSC.
Returns: - norm_score (float): The normalized score for the AFSC assignment, ranging from 0 to 1.
Description: This function calculates the normalized score for an assignment of cadets to an AFSC. The score reflects how well the cadets are matched to their preferences for the given AFSC. A higher score indicates a better match, while a lower score suggests a less favorable assignment.
The calculation involves comparing the achieved ranks of cadets to the best and worst possible ranks for the AFSC assignment. The result is then normalized to a range between 0 and 1, with 1 being the best possible score and 0 being the worst.
Dependencies: - NumPy
Returns: - norm_score (float): The normalized score for the AFSC assignment, ranging from 0 to 1.
Source code in afccp/solutions/handling.py
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
|
calculate_additional_useful_metrics(solution, p, vp)
¶
Add additional components to the "metrics" dictionary based on the parameters and value parameters.
Parameters: solution (dict): The dictionary containing the existing metrics. p (dict): The parameters dictionary. vp (dict): The value parameters dictionary.
Returns: solution (dict): The updated metrics dictionary.
Note: This function adds additional components to the "solution" dictionary based on the provided parameters and value parameters. The purpose is to enhance the information and analysis of the solution/metrics.
Source code in afccp/solutions/handling.py
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
calculate_base_training_metrics(solution, p, vp)
¶
Add additional base/training components to the "solution" dictionary based on the parameters and value parameters.
Source code in afccp/solutions/handling.py
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
|
calculate_castle_solution_metrics(solution, p)
¶
Add CASTLE-specific solution metrics
Source code in afccp/solutions/handling.py
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
|
calculate_objective_measure_chromosome(cadets, j, objective, p, vp, count)
¶
Calculates the AFSC objective measure based on the provided parameters.
Parameters: cadets (list): List of cadets. j (int): AFSC index. objective (str): Objective for which to calculate the measure. p (dict): Parameters used in the calculations. vp (dict): Value parameters used in the calculations. count (int): Number of cadets.
Returns: measure (float): The calculated AFSC objective measure.
Note: The function assumes an "exact" model since it's used in the fitness function. The measure is calculated based on the objective and the provided inputs.
Source code in afccp/solutions/handling.py
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
|
calculate_objective_measure_matrix(x, j, objective, p, vp, approximate=True)
¶
Calculates the AFSC objective measure based on the provided parameters.
Parameters: x (ndarray): Matrix representing the assignment of cadets to AFSCs. j (int): AFSC index. objective (str): Objective for which to calculate the measure. p (dict): Parameters used in the calculations. vp (dict): Value parameters used in the calculations. approximate (bool, optional): Flag indicating whether to use an approximate measure (divide by estimated number of cadets, not the REAL number af cadets assigned to the AFSC. Defaults to True.
Returns: measure (float): The calculated AFSC objective measure. numerator (float or None): The numerator used in the calculation of the measure. It is None for certain objectives.
Raises: ValueError: If the provided objective does not have a means of calculation in the VFT model.
Note: The measure and numerator are calculated based on the objective and the provided inputs. The numerator is the value used in the calculation of the measure (sum of cadets with some feature over the "num_cadets" variable which is either the actual number of cadets assigned (count) or estimated (quota_e).
Source code in afccp/solutions/handling.py
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 |
|
calculate_failed_constraint_metrics(j, k, solution, p, vp)
¶
Calculate failed constraint metrics for an AFSC objective and return the updated metrics dictionary.
Parameters: j (int): Index of the AFSC objective. k (int): Index of the objective measure. solution (dict): The solution/metrics dictionary. p (dict): The fixed cadet/AFSC model parameters. vp (dict): The weight/value parameters.
Returns: solution (dict): The updated solution/metrics dictionary.
Note: This function calculates the failed constraint metrics for an AFSC objective and updates the metrics dictionary with the newly calculated values.
Source code in afccp/solutions/handling.py
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 |
|
check_failed_constraint_chromosome(j, k, measure, count, p, vp, con_fail_dict)
¶
This function takes in the AFSC index, objective index, AFSC objective measure, number of cadets assigned (count), parameters, value parameters, and the constraint fail dictionary and determines if we've failed the constraint or not.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
j |
Index of the AFSC (Air Force Specialty Code). |
required | |
k |
Index of the objective. |
required | |
measure |
Measure of the AFSC objective. |
required | |
count |
Number of cadets assigned. |
required | |
p |
Dictionary of parameters. - 'quota_min': Array of minimum quotas for each AFSC. - 'pgl': Array of Program Guidance Letter (PGL) targets for each AFSC. |
required | |
vp |
Dictionary of value parameters. - 'constraint_type': Array representing the constraint type for each AFSC and objective. - 1 represents Constrained Approximate Measure. - 2 represents Constrained Exact Measure. - 'objective_min': Array representing the minimum objective value for each AFSC and objective. - 'objective_max': Array representing the maximum objective value for each AFSC and objective. |
required | |
con_fail_dict |
Dictionary containing information about failed constraints (optional). - Keys are tuples (j, k) representing AFSC and objective indices. - Values are strings representing adjusted min/max values for the failed constraint. - If the string starts with '>', it means the minimum value needed should be lowered. - Otherwise, it means the maximum value allowed should be raised. |
required |
Returns:
Type | Description |
---|---|
A boolean indicating whether the constraint is failed or not. - True if the measure is outside the constrained range (constraint failed). - False if the measure is within the constrained range (constraint passed). |
Source code in afccp/solutions/handling.py
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
|
compare_solutions(baseline, compared, printing=False)
¶
Compare two solutions (in vector form) to the same problem and determine the similarity between them based on the AFSCs assigned to cadets.
Parameters: baseline (numpy.ndarray): The first solution (baseline) to compare. compared (numpy.ndarray): The second solution to compare against the baseline. printing (bool, optional): Whether to print the similarity percentage. Defaults to False.
Returns: percent_similar (float): The percentage of the compared solution that is the same as the baseline solution.
Note: This function compares two solutions represented as vectors and calculates the percentage of similarity between them in terms of the AFSCs assigned to cadets. The solutions must be for the same set of cadets and AFSCs.
Example: baseline = np.array([0, 1, 2, 1, 0]) compared = np.array([1, 0, 2, 1, 0]) similarity = compare_solutions(baseline, compared, printing=True) # Output: The two solutions are 60.0% the same (3/5).
Source code in afccp/solutions/handling.py
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 |
|
similarity_coordinates(similarity_matrix)
¶
Perform Multidimensional Scaling (MDS) on a similarity matrix to obtain coordinates representing the solutions' similarity relationships.
Parameters: - similarity_matrix (numpy.ndarray): A square similarity matrix where each element (i, j) measures the similarity between solutions i and j.
Returns: - coordinates (numpy.ndarray): An array of 2D coordinates representing the solutions in a space where the distance between solutions reflects their similarity.
Description: This function takes in a similarity matrix and performs Multidimensional Scaling (MDS) to obtain coordinates representing the solutions in a lower-dimensional space. The purpose of MDS is to transform similarity data into distances. In the resulting 2D space, solutions that are similar to each other will be closer together, while dissimilar solutions will be farther apart.
MDS is particularly useful for visualizing the similarity relationships among solutions. These coordinates can be used for plotting or further analysis to gain insights into how solutions relate to each other based on their similarities.
Note: Ensure that you have the required libraries, such as NumPy and Scikit-learn, installed.
Source code in afccp/solutions/handling.py
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
|
incorporate_rated_results_in_parameters(instance, printing=True)
¶
This function extracts the results from the two Rated solutions (for both USAFA & ROTC) and incorporates them into the problem's parameters. It fixes cadets who were "matched" by the algorithm to specific AFSCs and constrains individuals who had "reserved" slots.
Parameters: - instance: An instance of the problem, containing parameters and algorithm results. - printing (bool, optional): A flag to control whether to print information during execution. Set to True to enable printing, and False to suppress it. Default is True.
Returns: - parameters (dict): The updated parameters dictionary reflecting the rated algorithm results.
Description: This function is used to integrate the outcomes of the Rated SOC (Source of Commissioning) algorithm into the problem's parameters. It processes the results for both USAFA (United States Air Force Academy) and ROTC (Reserve Officers' Training Corps) categories.
-
The "Matched" cadets are assigned to specific AFSCs based on the algorithm results. These assignments are recorded in the 'J^Fixed' array within the parameters.
-
The "Reserved" cadets have their AFSC selections constrained based on their reserved slots. The 'J^Reserved' dictionary is updated to enforce these constraints.
-
Special treatment is provided for AFSCs with an "alternate list" concept. Cadets who did not receive one of their top preferences but are next in line for a particular AFSC are assigned to the "alternate list." Cadets on this list may be given preferences or reserved slots, depending on availability.
This function aims to ensure that the problem's parameters align with the Rated SOC algorithm's results, facilitating further decision-making and analysis.
Note: Detailed information on the Rated SOC algorithm results is assumed to be available within the 'instance.'
Source code in afccp/solutions/handling.py
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 |
|
augment_rated_algorithm_results(p, soc='rotc', printing=False, num_additions_rotc_pilot: int = 0)
¶
Analyzes the results of the Rated SOC algorithm for a specific SOC (Source of Commissioning), such as ROTC or USAFA, and augments the system's parameters. This analysis includes identifying alternates and definitively matching additional individuals to AFSCs.
Parameters: - p (dict): The problem's parameters containing relevant data. - soc (str, optional): The SOC to analyze and augment results for. Default is 'rotc'. - printing (bool, optional): A flag to control whether to print information during execution. Set to True to enable printing, and False to suppress it. Default is False.
Returns: - parameters (dict): The updated parameters dictionary reflecting the rated algorithm results, including alternates and definitively matched individuals.
Description: This function processes the results of the Rated SOC algorithm for a specific SOC category, identifying alternates and definitively matching additional individuals to AFSCs. The primary goal is to ensure the system's parameters accurately reflect the outcomes of the algorithm, which aids in further analysis and decision-making.
- 'Reserved' cadets have their AFSC selections constrained to match their reserved slots.
- 'Matched' cadets are assigned specific AFSCs based on the algorithm results.
- 'Alternates' are cadets who did not receive one of their top AFSC preferences but are next in line for specific AFSCs based on the algorithm's execution. Alternates may be given preferences or reserved slots, depending on availability.
Note: Detailed information on the Rated SOC algorithm results is assumed to be available within the 'parameters.'
Source code in afccp/solutions/handling.py
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 |
|