CadetCareerProblem – Other Adjustments Methods¶
parameter_sanity_check()
¶
Perform a Full Sanity Check on the Instance Parameters and Value Parameters.
This method serves as a high-level entry point for validating the integrity and feasibility of all input data
used in the AFSC cadet-career field assignment model. It ensures that parameters (self.parameters
) and value
parameters (self.value_parameters
) are properly defined, logically consistent, and free of structural or
numerical issues prior to model execution.
The method internally delegates the actual check logic to
afccp.data.adjustments.parameter_sanity_check(self)
, which audits everything from AFSC quotas, cadet eligibility,
objective constraints, preference matrices, tier distributions, and utility monotonicity.
Parameters:¶
- self:
CadetCareerProblem
The instance of the assignment problem containing the full dataset and modeling structure.
Returns:¶
- None: This method prints a summary of all issues detected but does not return any value. It may raise a
ValueError
if thevalue_parameters
are missing or invalid.
Examples:¶
# Run a full input audit before solving
instance.parameter_sanity_check()
Example output (truncated for brevity):
3 ISSUE: AFSC '15A' quota_min (15) > number of eligible cadets (13)
4 ISSUE: Cadet 41 has no preferences and is therefore eligible for nothing.
5 ISSUE: Objective 'Tier 2' has value function with unsorted breakpoints.
See Also:¶
parameter_sanity_check
: Full implementation of the internal logic performing the data validation. ```
Source code in afccp/main.py
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 |
|
create_final_utility_matrix_from_new_formula(printing=None)
¶
Construct the Final Cadet Utility Matrix Using a New Weighted Formula.
This method builds the cadet_utility
matrix by applying a new utility scoring formula that combines:
- Ranked ordinal preferences
- Cadet-specified utility values
- Boolean least desired AFSC logic (e.g., last choice, bottom 2, etc.)
The scoring function is applied to each cadet-AFSC pairing based on a normalized mix of ranking and utility to capture more nuanced decision-making behavior. This method is essential for creating the input data used in optimization.
After computing the new utility values, the method also updates the internal parameter sets to ensure consistency between derived structures (e.g., eligibility dictionaries and matrix representations).
Parameters:¶
- printing (bool, optional): Whether to print progress messages. If None, defaults to
self.printing
.
Returns:¶
- None: This method modifies
self.parameters
in-place with updated cadet utility values and updated preference-derived sets.
Examples:¶
# Run the transformation step to produce cadet utilities from ranked inputs
instance.create_final_utility_matrix_from_new_formula(printing=True)
See Also:¶
create_final_cadet_utility_matrix_from_new_formula
: Core function that applies the new weighted formula to calculate cadet utilities.parameter_sets_additions
: Ensures derived sets such asI^E
andJ^E
are regenerated after utility/preference updates. ```
Source code in afccp/main.py
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 |
|
set_ots_must_matches(printing=None)
¶
Set OTS Cadet Must-Match Constraints Based on Order of Merit.
This method determines which Officer Training School (OTS) cadets must be assigned an AFSC
by evaluating their Order of Merit (OM) scores. It sorts the eligible OTS cadets by merit and
selects the top ots_accessions
(rounded to 99.5%) to be marked as "must match" within the
optimization model.
The method modifies the must_match
vector and updates the I^Must_Match
set accordingly.
These constraints are used to enforce that high-ranking OTS cadets must be matched during the
assignment process.
If the instance does not include OTS cadets (i.e., 'ots' not in SOCs
), the function exits early
without making any changes.
Parameters:¶
- printing (bool, optional): If True, prints logging information about the matching process.
If None (default), uses the instance's
self.printing
attribute.
Returns:¶
- None: This method updates the instance's
parameters
attribute in place.
Examples:¶
instance.set_ots_must_matches(printing=True)
See Also:¶
set_ots_must_matches
: Underlying function that applies the must-match logic to the parameter dictionary.
Source code in afccp/main.py
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 |
|
calculate_qualification_matrix(printing=None)
¶
Generate or Update the Qualification Matrix Based on CIP Codes.
This method regenerates the degree qualification matrix (qual
) using CIP codes
(cip1
, and optionally cip2
) mapped to AFSCs via a tiered system. The qualification matrix
determines which cadets are eligible for which AFSCs and tags them accordingly as mandatory,
desired, permitted, ineligible, or exceptional. It is useful when switching qualification logic
or refreshing the matrix after modifying degree information.
Parameters:¶
- printing (bool, optional): If True, print progress messages to the console.
Defaults to the instance's
self.printing
attribute.
Returns:¶
- None: The function updates the
self.parameters
attribute in-place.
Examples:¶
instance.calculate_qualification_matrix(printing=True)
See Also:¶
cip_to_qual_tiers
: Generates the tiered qualification matrix based on CIP-to-AFSC logic.parameter_sets_additions
: Rebuilds internal indexed parameter sets and flags after matrix updates.
Source code in afccp/main.py
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 |
|