CadetCareerProblem – Optimization Models & Meta-Heuristics Methods¶
solve_vft_pyomo_model(p_dict={}, printing=None)
¶
Solve the VFT model using Pyomo, an optimization modeling library.
This method is responsible for solving the Value Focussed Thinking (VFT) model using Pyomo. The VFT model is a specific type of optimization model. It conducts the necessary preparation, builds the model, solves it, and handles the resulting solution. The goal is to find optimal solutions for the VFT problem.
Args: p_dict (dict): A dictionary of parameters used for the model. It allows for customization of the model's input parameters. printing (bool, None): A flag to control whether to print information during the model-solving process. If set to True, the method will print progress and debugging information. If set to False, it will suppress printing. If None, the method will use the default printing setting from the class instance.
Returns: solution: The solution of the VFT model, which contains the optimal values for the decision variables and other relevant information.
Notes: - Before using this method, it's important to ensure that the class instance contains valid and appropriate data. - This method uses external functions for building and solving the Pyomo model, and the specifics of those functions are located in the 'afccp.solutions.optimization' module.
Source code in afccp/main.py
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 |
|
solve_original_pyomo_model(p_dict={}, printing=None)
¶
Solve the original AFPC model using pyomo
Source code in afccp/main.py
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 |
|
solve_guo_pyomo_model(p_dict={}, printing=None)
¶
Solve the "generalized assignment problem" model with the new global utility matrix constructed from the AFSC and Cadet Utility matrices. This is the "GUO" model.
Source code in afccp/main.py
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 |
|
solve_gp_pyomo_model(p_dict={}, printing=None)
¶
Solve the Goal Programming Model (Created by Lt. Reynolds)
Source code in afccp/main.py
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 |
|
solve_vft_main_methodology(p_dict={}, printing=None)
¶
This is the main method to solve the problem instance. We first determine an initial population of solutions. We then evolve the solutions further using the GA.
Source code in afccp/main.py
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 |
|
vft_genetic_algorithm(p_dict={}, printing=None)
¶
This is the genetic algorithm. The hyper-parameters to the algorithm can be tuned, and this is meant to be solved in conjunction with the pyomo model solution. Use that as the initial solution, and then we evolve from there
Source code in afccp/main.py
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 |
|
genetic_matching_algorithm(p_dict={}, printing=None)
¶
This method solves the problem instance using "Genetic Matching Algorithm"
Source code in afccp/main.py
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 |
|