data.support
¶
Data Support Module¶
Provides supporting functions for configuring problem instances and generating AFSC-related visualization and qualification metadata in the AFCCP system.
This module contains helper functions used to initialize and update key parameter sets related to AFSCs, cadet eligibility, solution comparison, and qualification tiers. These functions support both the modeling pipeline and result interpretation by preparing model-specific parameters and simplifying downstream visualization or analysis tasks.
Functions¶
initialize_instance_functional_parameters
: Adds AFCCP-specific keys to the model parameters, including default display and export options.determine_afsc_plot_details
: Sets visualization attributes for each AFSC (e.g., colors, abbreviations, names) used in plots and diagrams.determine_afscs_in_image
: Filters AFSCs to display in charts based on the solution scope, accession source, or eligibility threshold.pick_most_changed_afscs
: Identifies the AFSCs with the greatest variability in cadet assignments across multiple solutions.cip_to_qual_tiers
: Computes cadet qualification tiers (e.g., M1, D2, P3) based on their CIP degree codes for each AFSC.
Typical Use Cases¶
- Automatically setting up model parameters based on the data inputs (
initialize_instance_functional_parameters
) - Preparing AFSC visuals for comparison charts or preference graphs (
determine_afsc_plot_details
,determine_afscs_in_image
) - Analyzing how different modeling approaches affect AFSC-level cadet outcomes (
pick_most_changed_afscs
) - Generating qualification matrices for cadets using AFOCD-based tiering rules (
cip_to_qual_tiers
)
initialize_instance_functional_parameters(N)
¶
Initializes the functional parameters used by the CadetCareerProblem object.
Parameters¶
N : int Number of cadets in the problem instance. Used to scale certain algorithm parameters.
Returns¶
dict
A dictionary of instance parameters (mdl_p
) controlling behavior, algorithms, chart rendering,
Pyomo integration, CASTLE compatibility, and more.
Overview¶
This function provides a centralized configuration for the CadetCareerProblem object. Parameters are grouped by functionality and define the default settings for:
- Generic Solution Handling: Toggles for storing, naming, and gathering metrics from solutions.
- Matching Algorithm Parameters: Controls for deterministic/rated/genetic matching algorithms.
- Rated Matching Parameters: Defines logic for cross-commissioning and board behavior for rated tracks.
- Genetic Algorithm Settings: Population size, mutation logic, crossover mechanics, and GA heuristics.
- Pyomo Integration: Solver-specific options, time limits, and accessions logic.
- Constraint Logic: Bounds and options for special constraints (e.g., USSF-specific, merit floors).
- VFT and Constraint Placement: Value Function Tool (VFT) control and constraint modeling logic.
- Chart Parameters: Configuration for Bubble, AFSC, utility, and comparison charts.
- Sensitivity Analysis: Controls for PGL iteration studies and Pareto frontier evaluations.
- CASTLE Integration: Optional toggles for syncing with the CASTLE system (e.g., GUO compatibility).
- Chart Color Palettes: A full color dictionary for use across demographics, performance, and visuals.
- Animation and Interaction Colors: Highlights for matched/unmatched cadets and choice levels.
- Slide Export and Layout: Coordinates and chart choices for building slides or figures.
Notes¶
- Analysts can modify these values in-place or pass an updated version of this dictionary into
CadetCareerProblem methods. See the
p_dict
parameter option of theCadetCareerProblem
class - Chart rendering behavior (figures, legends, annotations) is also fully parameterized here.
- Default values are tuned for USAFA cadet datasets but can be adapted to ROTC/OTS or simulation needs.
See Also¶
Source code in afccp/data/support.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
determine_afsc_plot_details(instance, results_chart=False)
¶
Configures AFSC chart display parameters based on the instance settings and chart type.
This function adjusts plotting parameters such as which AFSCs to display, label rotation, selected AFSC objective, color schemes, and solution settings. It ensures that the plotting context is consistent with the data variant and chart type requested.
Parameters¶
instance : object The CadetCareerProblem instance containing parameters, solution data, and metadata used to configure the plot behavior.
results_chart : bool, optional Whether this is a results-oriented plot (e.g., for solution comparison). When True, solution names, objective validation, and plotting colors/markers are configured.
Returns¶
dict
The updated mdl_p
dictionary containing plot-specific parameters.
Behavior¶
- Automatically determines AFSCs to display (
afscs_to_show
) based on instance context. - Decides whether to skip or rotate AFSC x-axis labels, depending on the number of AFSCs and data source.
- Ensures a valid AFSC and corresponding objective are selected for chart generation.
- Validates compatibility of the selected chart
version
with the chosenobjective
. - Limits solution comparisons to a maximum of 4 solutions unless
Multi-Criteria Comparison
is specified. - Assigns distinct colors, markers, and z-order to each solution when
results_chart=True
.
Raises¶
ValueError If an unsupported objective or chart version is selected, or if too many solutions are selected for a results plot.
See Also¶
Source code in afccp/data/support.py
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
|
determine_afscs_in_image(p, mdl_p)
¶
Determines which AFSCs were included in the optimization and which should be displayed in the visualization.
This function updates the mdl_p
dictionary with:
- AFSCs that were solved for (afscs_in_solution
)
- AFSCs that should be shown in the plots (afscs
)
- The corresponding AFSC indices (J
) and total count (M
)
It handles various ways the user may specify AFSC subsets to visualize, including: - 'All' to show all solved AFSCs - A specific accessions group like 'Rated', 'NRL', or 'USSF' - A commissioning source like 'USAFA', 'ROTC', or 'OTS' - A user-supplied list of AFSC names
If eligibility_limit
is set, only AFSCs with a number of eligible cadets below that threshold are included.
Parameters¶
p : dict The problem parameters, including AFSCs, eligibility mappings, and accessions group information.
mdl_p : dict The model parameters used for chart configuration and visualization. This dictionary is updated in place with the resolved AFSCs to include in plots.
Returns¶
dict
The updated mdl_p
dictionary with the following keys updated or added:
- 'afscs_in_solution': list of AFSCs optimized in the current instance
- 'afscs': list of AFSCs to display in the current visualization
- 'J': numpy array of AFSC indices corresponding to
afscs
- 'M': integer count of AFSCs in the chart
Source code in afccp/data/support.py
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
|
pick_most_changed_afscs(instance)
¶
Identifies the AFSCs with the most variation in cadet assignments across solutions.
This function analyzes multiple solutions in a "Multi-Criteria Comparison" context and selects the AFSCs whose cadet assignments vary the most. For each AFSC, it computes how many cadets are consistently assigned to it across all solutions and compares that to the maximum number of cadets ever assigned to it in any single solution.
Parameters¶
instance : object An instance of the problem containing:
parameters
: a dictionary of static problem datasolutions
: a dictionary of named solution outputsmdl_p
: model parameters including 'solution_names' and 'num_afscs_to_compare'
Returns¶
np.ndarray An array of AFSC names (strings) corresponding to the most changed AFSCs, ranked by variability in cadet assignments.
Examples¶
afscs = pick_most_changed_afscs(instance)
print("Top variable AFSCs across solutions:", afscs)
Source code in afccp/data/support.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
|
cip_to_qual_tiers(afscs, cip1, cip2=None, cip3=None, business_hours=None, true_tiers=True)
¶
Generate qualification tiers for cadets based on CIP codes and AFSCs. Current as of Oct '2024
This function determines the qualification tiers (e.g., M1, D2, P3, I4) for a set of cadets based on the Classification of Instructional Programs (CIP) codes associated with their degrees. It evaluates the suitability of each cadet for each Air Force Specialty Code (AFSC) using official AFOCD guidance and updates from career field managers.
If multiple CIP sources are available (e.g., primary, secondary, tertiary degrees), the function returns the best qualifying tier across all provided sources.
Parameters¶
- afscs : list of str List of Air Force Specialty Codes (AFSCs) to evaluate against cadet degree qualifications.
- cip1 : numpy.ndarray Primary degree CIP codes for each cadet. Expected to be a string or numeric array of length N.
- cip2 : numpy.ndarray, optional Secondary degree CIP codes for each cadet (if available).
- cip3 : numpy.ndarray, optional Tertiary or external CIP codes (e.g., scraped from catalog websites or manually added).
- business_hours : numpy.ndarray, optional Number of business-related credit hours per cadet. Used for disambiguation in certain AFSCs (e.g., 63A).
- true_tiers : bool, default=True If True, applies refined qualification tiers based on updates from CFMs and AFOCD (as of June 2023 and later).
Returns¶
- numpy.ndarray A matrix of shape (N, M), where each entry is a qualification tier string (e.g., 'M1', 'D2', 'P3', 'I4') for cadet i and AFSC j.
Examples¶
afscs = ['17X', '62EXE', '21R']
cip1 = np.array(['110102', '141001', '520409'])
qual_matrix = cip_to_qual_tiers(afscs, cip1)
print(qual_matrix)
Details¶
-
Qualification tiers follow AFOCD conventions:
- M = Mandatory
- D = Desired
- P = Permitted
- I = Ineligible
- The second number (e.g., 1 in 'M1') indicates how strong the tier is within that category (1 = best).
- If multiple CIP sources are provided, the best (lowest) tier number is selected for each cadet–AFSC pair.
- Covers dozens of AFSCs and handles specific CIP-to-AFSC mappings with multiple tiers per AFSC.
Notes¶
- Includes recent updates from AFOCD Oct '24 and refinements from Air Force CFMs.
- Used in the cadet-career field qualification model to help filter and prioritize match options.
Source code in afccp/data/support.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 |
|