Skip to content

data.processing

Data Processing Module

This module handles all input/output operations for the AFCCP modeling pipeline.

It supports importing problem instance data (AFSCs, cadets, preferences, value functions, etc.) and exporting solutions and diagnostics to CSV and Excel formats for analysis. It also initializes the directory structure for versioned data instances.

Key Capabilities

  • Organizes input/output folders and paths for a data instance
  • Imports cleaned data required for AFCCP optimization
  • Exports results and supporting data for evaluation and visualization

Primary Functions

  • Initialization

    • initialize_file_information: Sets up import/export folder paths for a given data name and version
  • Import Functions

    • import_afscs_data: Loads AFSCs and related structural data
    • import_cadets_data: Loads cadet records and attributes
    • import_afsc_cadet_matrices_data: Loads cadet preference matrices and qualification matrices
    • import_value_parameters_data: Loads objective weights and breakpoints for value functions
    • import_solutions_data: Imports previously solved cadet-to-AFSC assignments
    • import_additional_data: Loads auxiliary data like base assignments and course info
  • Export Functions

    • export_afscs_data: Saves AFSC-related data to CSV
    • export_cadets_data: Saves cadet-related data to CSV
    • export_afsc_cadet_matrices_data: Saves preference and qualification matrices to CSV
    • export_value_parameters_data: Saves value function breakpoints and weights to CSV
    • export_solutions_data: Saves one or more solutions in compact CSV format
    • export_additional_data: Saves supporting data (base preferences, utility matrices, courses)
    • export_solution_results_excel: Writes detailed solution metrics and diagnostics to an Excel workbook

Notes

All functions assume access to an Instance object that contains parameters, value structures, solution data, and export path information. The module is used during both the data preparation and results analysis stages of the AFCCP workflow.

initialize_file_information(data_name: str, data_version: str)

Initialize filepaths for an AFCCP data instance.

This function constructs and returns import/export file path dictionaries for a given AFCCP data instance identified by data_name and data_version. It ensures the required directory structure exists under instances/ and dynamically builds file paths for reading and writing instance-specific data and results.

It is primarily used to manage file I/O consistently across different data experiments or scenario versions within the AFCCP modeling system.

Parameters

  • data_name : str The name of the data instance (e.g., "2025", "Baseline", "TestRun01"). This defines the subdirectory under instances/ where the data is stored.

  • data_version : str The version label for the run (e.g., "Default", "V1"). Used to separate multiple experimental runs under the same data instance name, enabling controlled versioning of model input and output files.

Returns

  • Tuple[Dict[str, str], Dict[str, str]] A tuple of two dictionaries:
    • import_paths: maps each input data type (e.g., "Cadets", "AFSCs") to its CSV file path.
    • export_paths: maps each output destination (e.g., "Solutions", "Results Charts") to its folder or file path.

Directory Behavior

  • Creates base folder instances/<data_name>/ if it doesn't exist.
  • Creates version-specific folders for "Model Input" and "Analysis & Results":
    • e.g., "4. Model Input (V1)", "5. Analysis & Results (V1)"
  • Also creates subfolders under "Analysis & Results" such as:
    • "Data Charts", "Results Charts", "Cadet Board", "Value Functions"
  • If version-specific input files are not found, it defaults to shared or base files when appropriate.

Examples

from afccp.data.processing import initialize_file_information

import_paths, export_paths = initialize_file_information("2025", "V1")
afsc_path = import_paths["AFSCs"]
solution_folder = export_paths["Analysis & Results"]
Source code in afccp/data/processing.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def initialize_file_information(data_name: str, data_version: str):
    """
    Initialize filepaths for an AFCCP data instance.

    This function constructs and returns import/export file path dictionaries for a given AFCCP
    data instance identified by `data_name` and `data_version`. It ensures the required directory
    structure exists under `instances/` and dynamically builds file paths for reading and writing
    instance-specific data and results.

    It is primarily used to manage file I/O consistently across different data experiments or
    scenario versions within the AFCCP modeling system.

    Parameters
    ----------
    - data_name : str
      The name of the data instance (e.g., `"2025"`, `"Baseline"`, `"TestRun01"`). This defines the
      subdirectory under `instances/` where the data is stored.

    - data_version : str
      The version label for the run (e.g., `"Default"`, `"V1"`). Used to separate multiple experimental
      runs under the same data instance name, enabling controlled versioning of model input and output files.

    Returns
    -------
    - Tuple[Dict[str, str], Dict[str, str]]
      A tuple of two dictionaries:
        - `import_paths`: maps each input data type (e.g., `"Cadets"`, `"AFSCs"`) to its CSV file path.
        - `export_paths`: maps each output destination (e.g., `"Solutions"`, `"Results Charts"`) to its folder or file path.

    Directory Behavior
    ------------------
    - Creates base folder `instances/<data_name>/` if it doesn't exist.
    - Creates version-specific folders for `"Model Input"` and `"Analysis & Results"`:
        - e.g., `"4. Model Input (V1)"`, `"5. Analysis & Results (V1)"`
    - Also creates subfolders under `"Analysis & Results"` such as:
        - `"Data Charts"`, `"Results Charts"`, `"Cadet Board"`, `"Value Functions"`
    - If version-specific input files are not found, it defaults to shared or base files when appropriate.

    Examples
    --------
    ```python
    from afccp.data.processing import initialize_file_information

    import_paths, export_paths = initialize_file_information("2025", "V1")
    afsc_path = import_paths["AFSCs"]
    solution_folder = export_paths["Analysis & Results"]
    ```
    """

    # If we don't already have the instance folder, we make it now
    instance_path = "instances/" + data_name + "/"
    if data_name not in afccp.globals.instances_available:
        os.mkdir(instance_path)
    instance_folder = np.array(os.listdir(instance_path))

    # Valid files/folders
    sub_folders = ["Original & Supplemental", "Combined Data", "CFMs", "Model Input", "Analysis & Results"]
    sub_folder_files = {"Model Input": ["Cadets", "Cadets Preferences", "Cadets Utility", "Cadets Utility Constraints",
                                        "Cadets Utility (Final)", "AFSCs", "AFSCs Preferences", "AFSCs Utility",
                                        "Value Parameters", "Goal Programming", "ROTC Rated Interest",
                                        "ROTC Rated OM", "USAFA Rated OM", "OTS Rated OM",
                                        "Bases", "Bases Preferences",
                                        "Bases Utility", "Courses", "Cadets Selected", "AFSCs Buckets",
                                        'Castle Input'],
                        "Analysis & Results": ["Solutions", "Base Solutions", "Course Solutions"]}

    # Loop through each sub-folder in the above list and determine the filepaths for the various files
    import_filepaths = {}
    export_filepaths = {}
    for i, sub_folder in enumerate(sub_folders):

        # Sub-Folder with the number: "4. Model Input" for example
        numbered_sub_folder = str(i + 1) + ". " + sub_folder

        # All the sub-folders that have this numbered sub-folder
        if len(instance_folder) != 0:
            indices = np.flatnonzero(np.core.defchararray.find(instance_folder, numbered_sub_folder) != -1)
            sub_folder_individuals = instance_folder[indices]
        else:
            sub_folder_individuals = []

        # If this is the "default version", we already know what the sub-folder has to be
        if data_version == "Default":
            import_sub_folder = numbered_sub_folder
            export_sub_folder = numbered_sub_folder

            # If we don't currently have this sub-folder, we make it (New instance file)
            if numbered_sub_folder not in sub_folder_individuals:
                os.mkdir(instance_path + numbered_sub_folder + "/")

        # If the data version was specified, we have to check if it has the specific folder or not
        else:

            # If the version folder is not there, we import from the default but will export to the data version folder
            version_indices = np.flatnonzero(np.core.defchararray.find(sub_folder_individuals, data_version) != -1)
            if len(version_indices) == 0:
                import_sub_folder = numbered_sub_folder
                export_sub_folder = numbered_sub_folder + " (" + data_version + ")"

                # We will only ever export specific version data to these sub-folders
                if sub_folder in ["Model Input", "Analysis & Results"]:
                    os.mkdir(instance_path + export_sub_folder + "/")

            # We already have the version folder
            else:
                import_sub_folder = sub_folder_individuals[version_indices[0]]
                export_sub_folder = sub_folder_individuals[version_indices[0]]

        # If this is one of the sub-folders we can import/export to/from
        if sub_folder in sub_folder_files:

            # Get sub folder paths
            import_sub_folder_path = instance_path + import_sub_folder + "/"
            export_sub_folder_path = instance_path + export_sub_folder + "/"

            # Add generic file-paths for this sub-folder
            export_filepaths[sub_folder] = export_sub_folder_path
            import_filepaths[sub_folder] = import_sub_folder_path

            # Loop through each file listed above in the "sub_folder_files" for this sub-folder
            sub_folder_files_available = os.listdir(import_sub_folder_path)
            for file in sub_folder_files[sub_folder]:

                # Create the name of the file
                if data_version == "Default":
                    filename = data_name + " " + file + ".csv"
                else:
                    filename = data_name + " " + file + " (" + data_version + ").csv"

                # Get the path that we would export this file to
                export_filepaths[file] = export_sub_folder_path + filename

                # If we already have this file in the "import path", we add it to that filepath dictionary
                if filename in sub_folder_files_available:
                    import_filepaths[file] = import_sub_folder_path + filename
                elif data_version != "Default" and data_name + " " + file + ".csv" in sub_folder_files_available:
                    import_filepaths[file] = import_sub_folder_path + data_name + " " + file + ".csv"

    # If we don't have one of the Analysis & Results "sub-sub folders", we make it
    for sub_sub_folder in ["Data Charts", "Results Charts", "Cadet Board", 'Value Functions']:
        if sub_sub_folder not in os.listdir(export_filepaths["Analysis & Results"]):
            os.mkdir(export_filepaths["Analysis & Results"] + sub_sub_folder + "/")

    # Return the information
    return import_filepaths, export_filepaths

import_afscs_data(import_filepaths: dict, parameters: dict) -> dict

Imports AFSC-level model input data from CSV and populates the instance parameter dictionary.

This function reads the "AFSCs" input file (provided via import_filepaths) and updates the supplied parameters dictionary with structured information for each Air Force Specialty Code (AFSC). These inputs are essential for AFCCP modeling and include AFSC quotas, groupings, tiered degree requirements, and other structural attributes.

The function handles type conversion, fills missing entries, and appends a special unmatched AFSC ("*") for use in optimization logic.

Parameters

  • import_filepaths : dict A dictionary of import paths keyed by label (e.g., "AFSCs"). Must contain the key "AFSCs" pointing to the location of the AFSCs input CSV file.

  • parameters : dict A dictionary of instance-wide input parameters. This will be updated in-place with the AFSC-specific parameter values.

Returns

  • dict The updated parameters dictionary, now containing keys such as:

  • "afscs": List of AFSC names (plus an unmatched AFSC "*")

  • "acc_grp": Accession group categories
  • "afscs_stem": STEM-designation indicator for each AFSC
  • "quota_d", "quota_e", "quota_min", "quota_max": Target and constraint bounds
  • "pgl": Projected graduation levels for each AFSC
  • "Deg Tiers": Tiered degree qualification matrix (if present)

Notes

  • All values are loaded as NumPy arrays to facilitate vectorized modeling.
  • The unmatched AFSC "*" is appended to "afscs" for modeling unmatched cadets.
  • NaN entries and string "nan" values in the CSV are sanitized to empty strings before processing.
  • Degree tiers are only added if the "Deg Tier 1" column is present in the CSV. ```

See Also

Source code in afccp/data/processing.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def import_afscs_data(import_filepaths: dict, parameters: dict) -> dict:
    """
    Imports AFSC-level model input data from CSV and populates the instance parameter dictionary.

    This function reads the `"AFSCs"` input file (provided via `import_filepaths`) and updates the supplied
    `parameters` dictionary with structured information for each Air Force Specialty Code (AFSC). These inputs
    are essential for AFCCP modeling and include AFSC quotas, groupings, tiered degree requirements, and other
    structural attributes.

    The function handles type conversion, fills missing entries, and appends a special unmatched AFSC ("*") for
    use in optimization logic.

    Parameters
    ----------
    - import_filepaths : dict
      A dictionary of import paths keyed by label (e.g., `"AFSCs"`). Must contain the key `"AFSCs"` pointing to
      the location of the AFSCs input CSV file.

    - parameters : dict
      A dictionary of instance-wide input parameters. This will be updated in-place with the AFSC-specific
      parameter values.

    Returns
    -------
    - dict
    The updated `parameters` dictionary, now containing keys such as:

    - `"afscs"`: List of AFSC names (plus an unmatched AFSC "*")
    - `"acc_grp"`: Accession group categories
    - `"afscs_stem"`: STEM-designation indicator for each AFSC
    - `"quota_d"`, `"quota_e"`, `"quota_min"`, `"quota_max"`: Target and constraint bounds
    - `"pgl"`: Projected graduation levels for each AFSC
    - `"Deg Tiers"`: Tiered degree qualification matrix (if present)

    Notes
    -----
    - All values are loaded as NumPy arrays to facilitate vectorized modeling.
    - The unmatched AFSC `"*"` is appended to `"afscs"` for modeling unmatched cadets.
    - NaN entries and string "nan" values in the CSV are sanitized to empty strings before processing.
    - Degree tiers are only added if the `"Deg Tier 1"` column is present in the CSV.
    ```

    See Also
    --------
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    - [`import_csv_data`](../../../afccp/reference/globals/#globals.import_csv_data)
    """

    # Shorthand
    p = parameters

    # Import 'AFSCs' dataframe
    afscs_df = afccp.globals.import_csv_data(import_filepaths["AFSCs"])

    # Remove "nans"
    afscs_df = afscs_df.replace('nan', '')
    afscs_df = afscs_df.fillna('')

    # Initialize dictionary translating 'AFSCs' df columns to their parameter counterparts
    afsc_columns_to_parameters = {"AFSC": "afscs", "Accessions Group": "acc_grp", "STEM": 'afscs_stem',
                                  "USAFA Target": "usafa_quota",
                                  "ROTC Target": "rotc_quota",
                                  "OTS Target": "ots_quota",
                                  "PGL Target": "pgl", "Estimated": "quota_e",
                                  "Desired": "quota_d", "Min": "quota_min", "Max": "quota_max",
                                  'Max (Bubbles)': 'max_bubbles',
                                  "Assign Base": 'afsc_assign_base', 'Num Courses': 'T'}

    # Loop through each column in the 'AFSCs' dataframe to put it into the p dictionary
    for col in afscs_df.columns:

        # If the column is an instance parameter, we load it in as a numpy array
        if col in afsc_columns_to_parameters:
            p_name = afsc_columns_to_parameters[col]
            p[p_name] = np.array(afscs_df.loc[:, col])

    # Number of AFSCs
    p["M"] = len(p["afscs"])

    # Add an "*" to the list of AFSCs to be considered the "Unmatched AFSC"
    p["afscs"] = np.hstack((p["afscs"], "*"))

    # Get the degree tier information from the AFSCs
    if "Deg Tier 1" in afscs_df:
        p["Deg Tiers"] = np.array(afscs_df.loc[:, "Deg Tier 1": "Deg Tier 4"]).astype(str)

    # Return parameters dictionary
    return p

import_cadets_data(import_filepaths, parameters)

Imports Cadet-level model input data from CSV and populates the instance parameter dictionary.

This function reads the "Cadets" CSV file specified in import_filepaths and extracts relevant demographic, qualification, preference, training, and weighting information for each cadet. It populates the provided parameters dictionary with this structured data, including derived quantities like total cadet count, preference matrix dimensions, and accession source types (SOCs).

Parameters

  • import_filepaths : dict Dictionary of import paths keyed by label. Must contain the key "Cadets" pointing to the cadet input CSV path.

  • parameters : dict Dictionary of instance-level parameters. This dictionary will be updated in-place with cadet-related entries.

Returns

dict The updated parameters dictionary, now containing cadet-specific fields such as:

  • "cadets", "merit", "assigned", "asc1"/"asc2", "cip1"/"cip2" (basic identifiers)
  • "usafa", "soc", "minority", "race", "ethnicity" (demographic data)
  • "must_match" (AFSCs that must be assigned)
  • "c_preferences": Preference matrix (N x P) where N = cadets, P = preference slots
  • "c_utilities": Utility matrix (N x U), where U = min(P, 10)
  • "SOCs": List of accession sources present in this instance (e.g., ["usafa", "rotc"])
  • "training_start", "training_preferences", "training_threshold" (training pipeline values)
  • "weight_afsc", "weight_base", "weight_course" (objective weights)

Notes

  • NaN or string 'nan' entries in the CSV are automatically sanitized.
  • Extra care is taken to remove BOM characters (e.g., "") in CSV headers.
  • Preferences are detected using any column starting with "Pref_", and corresponding utilities from "Util_1" onward.
  • SOCs must be one of "USAFA", "ROTC", or "OTS"; any other value will raise an error.
  • This function calls gather_degree_tier_qual_matrix() to supplement qualification mappings.

See Also

Source code in afccp/data/processing.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def import_cadets_data(import_filepaths, parameters):
    """
    Imports Cadet-level model input data from CSV and populates the instance parameter dictionary.

    This function reads the `"Cadets"` CSV file specified in `import_filepaths` and extracts relevant demographic,
    qualification, preference, training, and weighting information for each cadet. It populates the provided
    `parameters` dictionary with this structured data, including derived quantities like total cadet count,
    preference matrix dimensions, and accession source types (SOCs).

    Parameters
    ----------
    - import_filepaths : dict
      Dictionary of import paths keyed by label. Must contain the key `"Cadets"` pointing to the cadet input CSV path.

    - parameters : dict
      Dictionary of instance-level parameters. This dictionary will be updated in-place with cadet-related entries.

    Returns
    -------
    dict
    The updated `parameters` dictionary, now containing cadet-specific fields such as:

    - `"cadets"`, `"merit"`, `"assigned"`, `"asc1"`/`"asc2"`, `"cip1"`/`"cip2"` (basic identifiers)
    - `"usafa"`, `"soc"`, `"minority"`, `"race"`, `"ethnicity"` (demographic data)
    - `"must_match"` (AFSCs that must be assigned)
    - `"c_preferences"`: Preference matrix (N x P) where N = cadets, P = preference slots
    - `"c_utilities"`: Utility matrix (N x U), where U = min(P, 10)
    - `"SOCs"`: List of accession sources present in this instance (e.g., `["usafa", "rotc"]`)
    - `"training_start"`, `"training_preferences"`, `"training_threshold"` (training pipeline values)
    - `"weight_afsc"`, `"weight_base"`, `"weight_course"` (objective weights)

    Notes
    -----
    - NaN or string 'nan' entries in the CSV are automatically sanitized.
    - Extra care is taken to remove BOM characters (e.g., `""`) in CSV headers.
    - Preferences are detected using any column starting with `"Pref_"`, and corresponding utilities from `"Util_1"` onward.
    - SOCs must be one of `"USAFA"`, `"ROTC"`, or `"OTS"`; any other value will raise an error.
    - This function calls `gather_degree_tier_qual_matrix()` to supplement qualification mappings.

    See Also
    --------
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    - [`gather_degree_tier_qual_matrix`](../../../afccp/reference/data/adjustments/#data.adjustments.gather_degree_tier_qual_matrix)
    """

    # Shorthand
    p = parameters

    # Import 'Cadets' dataframe
    cadets_df = afccp.globals.import_csv_data(import_filepaths["Cadets"])

    # Initialize dictionary translating 'AFSCs' df columns to their parameter counterparts
    cadet_columns_to_parameters = {"Cadet": "cadets", 'Male': 'male', 'Minority': 'minority', 'Race': 'race',
                                   "Ethnicity": "ethnicity", 'USAFA': 'usafa', 'SOC': 'soc',
                                   "Must Match": "must_match",
                                   'ASC1': 'asc1', 'ASC2': 'asc2',
                                   'CIP1': 'cip1', 'CIP2': 'cip2', 'Merit': 'merit', 'Real Merit': 'merit_all',
                                   "Assigned": "assigned", "STEM": "stem", "Accessions Group": "acc_grp_constraint",
                                   "SF OM": "sf_om", 'Start Date': 'training_start', 'Start Pref': 'training_preferences',
                                   'Base Threshold': 'base_threshold', 'Course Threshold': 'training_threshold',
                                   'AFSC Weight': 'weight_afsc', 'Base Weight': 'weight_base',
                                   'Course Weight': 'weight_course', 'Least Desired AFSC': 'last_afsc',
                                   'Second Least Desired AFSCs': 'second_to_last_afscs'}

    # Loop through each column in the 'Cadets' dataframe to put it into the p dictionary
    for col in cadets_df.columns:

        # Weird characters showing up
        if "" in col:
            col_name = col.replace("", "")
        else:
            col_name = col

        # If the column is an instance parameter, we load it in as a numpy array
        if col_name in cadet_columns_to_parameters:
            p_name = cadet_columns_to_parameters[col_name]
            p[p_name] = np.array(cadets_df.loc[:, col])

    # Number of Cadets
    p["N"] = len(p["cadets"])

    # Get qual matrix information
    p = afccp.data.adjustments.gather_degree_tier_qual_matrix(cadets_df, p)

    # Number of cadet preference choices available and number of utilities available
    p["P"] = len([col for col in cadets_df.columns if 'Pref_' in col])
    p["num_util"] = min(10, p["P"])
    if p["P"] != 0:

        # Get the preferences and utilities columns from the cadets dataframe
        p["c_preferences"] = np.array(cadets_df.loc[:, "Pref_1": "Pref_" + str(p['P'])])
        p["c_utilities"] = np.array(cadets_df.loc[:, "Util_1": "Util_" + str(p["num_util"])])

    # Determine which SOCs are in this instance
    if 'soc' in p:
        unique_socs = np.unique(p['soc'])  # Get unique list of SOCs

        # This just gets the SOCs in the right order
        soc_options = ['USAFA', 'ROTC', 'OTS']
        p['SOCs'] = np.array([soc.lower() for soc in soc_options if soc in unique_socs])

        for soc in unique_socs:
            if soc not in soc_options:
                raise ValueError(f'SOC {soc} not recognized as valid SOC option! At least one cadet has it.')

    # Return parameters dictionary
    return p

import_afsc_cadet_matrices_data(import_filepaths, parameters)

Imports optional AFSC-cadet interaction matrices and updates the instance parameter dictionary accordingly.

This function augments the core cadet and AFSC input data by importing preference matrices, utility matrices, and supplemental rated-selection files (if available). The imported data enables more advanced modeling of cadet-AFSC interactions including two-sided preferences and selection boards.

Parameters

  • import_filepaths : dict Dictionary of filepaths keyed by dataset name. Recognized keys include:

    • "Cadets Utility"
    • "Cadets Preferences"
    • "AFSCs Utility"
    • "AFSCs Preferences"
    • "Cadets Utility (Final)"
    • "Cadets Selected"
    • "AFSCs Buckets"
    • "ROTC Rated Interest", "ROTC Rated OM", "USAFA Rated OM", "OTS Rated OM"
  • parameters : dict Dictionary of model instance parameters. Must contain:

    • "afscs": array of AFSC names
    • "N": number of cadets
    • "M": number of AFSCs
    • "num_util": number of utility entries per cadet
    • "P": number of preferences

Returns

dict Updated parameter dictionary with new keys (if data was provided), including:

  • "utility": cadet utility matrix (N x M)
  • "c_pref_matrix": cadet preference rankings (N x M, integer-valued, 1 = top choice)
  • "afsc_utility": AFSC utility matrix (M x M)
  • "a_pref_matrix": AFSC preference rankings (M x M)
  • "cadet_utility": final cadet utility matrix (N x M)
  • "c_selected_matrix": matrix of cadets selected by AFSCs (N x M)
  • "a_bucket_matrix": bucketing of AFSCs for visualization or selection (M x M)
  • "rr_interest_matrix", "rr_om_matrix", "rr_om_cadets": ROTC board data
  • "ur_om_matrix", "ur_om_cadets": USAFA board data
  • "or_om_matrix", "or_om_cadets": OTS board data
  • "usafa_cadets": indices of USAFA cadets in the instance

Raises

ValueError If neither "Cadets Utility" nor "c_utilities" are provided in the inputs, since cadet utility data is required.

Notes

  • This function assumes the "Cadets" and "AFSCs" CSVs have already been processed.
  • If raw preferences/utilities are not explicitly imported, they are reconstructed from c_preferences and c_utilities.
  • Preference ranks use integers where 1 is most preferred (not 0).
  • Utility matrices are aligned by the order of p["afscs"] and not by the file column order alone.
  • AFSC utility and preference data are optional but support two-sided matching or board processes.
  • Rated OM/Interest files enable specialty-specific board logic for each SOC.
Source code in afccp/data/processing.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def import_afsc_cadet_matrices_data(import_filepaths, parameters):
    """
    Imports optional AFSC-cadet interaction matrices and updates the instance parameter dictionary accordingly.

    This function augments the core cadet and AFSC input data by importing preference matrices, utility matrices,
    and supplemental rated-selection files (if available). The imported data enables more advanced modeling of
    cadet-AFSC interactions including two-sided preferences and selection boards.

    Parameters
    ----------
    - import_filepaths : dict
        Dictionary of filepaths keyed by dataset name. Recognized keys include:

        - `"Cadets Utility"`
        - `"Cadets Preferences"`
        - `"AFSCs Utility"`
        - `"AFSCs Preferences"`
        - `"Cadets Utility (Final)"`
        - `"Cadets Selected"`
        - `"AFSCs Buckets"`
        - `"ROTC Rated Interest"`, `"ROTC Rated OM"`, `"USAFA Rated OM"`, `"OTS Rated OM"`

    - parameters : dict
        Dictionary of model instance parameters. Must contain:

        - `"afscs"`: array of AFSC names
        - `"N"`: number of cadets
        - `"M"`: number of AFSCs
        - `"num_util"`: number of utility entries per cadet
        - `"P"`: number of preferences

    Returns
    -------
    dict
    Updated parameter dictionary with new keys (if data was provided), including:

    - `"utility"`: cadet utility matrix (N x M)
    - `"c_pref_matrix"`: cadet preference rankings (N x M, integer-valued, 1 = top choice)
    - `"afsc_utility"`: AFSC utility matrix (M x M)
    - `"a_pref_matrix"`: AFSC preference rankings (M x M)
    - `"cadet_utility"`: final cadet utility matrix (N x M)
    - `"c_selected_matrix"`: matrix of cadets selected by AFSCs (N x M)
    - `"a_bucket_matrix"`: bucketing of AFSCs for visualization or selection (M x M)
    - `"rr_interest_matrix"`, `"rr_om_matrix"`, `"rr_om_cadets"`: ROTC board data
    - `"ur_om_matrix"`, `"ur_om_cadets"`: USAFA board data
    - `"or_om_matrix"`, `"or_om_cadets"`: OTS board data
    - `"usafa_cadets"`: indices of USAFA cadets in the instance

    Raises
    ------
    ValueError
      If neither `"Cadets Utility"` nor `"c_utilities"` are provided in the inputs, since cadet utility data is required.

    Notes
    -----
    - This function assumes the `"Cadets"` and `"AFSCs"` CSVs have already been processed.
    - If raw preferences/utilities are not explicitly imported, they are reconstructed from `c_preferences` and `c_utilities`.
    - Preference ranks use integers where `1` is most preferred (not `0`).
    - Utility matrices are aligned by the order of `p["afscs"]` and not by the file column order alone.
    - AFSC utility and preference data are optional but support two-sided matching or board processes.
    - Rated OM/Interest files enable specialty-specific board logic for each SOC.
    """

    # Shorthand
    p = parameters

    # Loop through the potential additional dataframes and import them if we have them
    datasets = {}
    for dataset in ["Cadets Utility", "Cadets Preferences", "AFSCs Utility", "AFSCs Preferences",
                    "ROTC Rated Interest", "ROTC Rated OM", "USAFA Rated OM", "OTS Rated OM", 'Cadets Utility (Final)',
                    "Cadets Selected", "AFSCs Buckets"]:

        # If we have the dataset, import it
        if dataset in import_filepaths:
            datasets[dataset] = afccp.globals.import_csv_data(import_filepaths[dataset])

    # First and last AFSC (for collecting matrices from dataframes)
    afsc_1, afsc_M = p["afscs"][0], p["afscs"][p["M"] - 1]

    # Load in extra dataframes
    for dataset, param in {'Cadets Selected': 'c_selected_matrix', 'AFSCs Buckets': 'a_bucket_matrix'}.items():
        if dataset in datasets:
            p[param] = np.array(datasets[dataset].loc[:, afsc_1: afsc_M])

    # Determine how we incorporate the original cadets' utility matrix
    if "Cadets Utility" in datasets:  # Load in the matrix directly
        p["utility"] = np.array(datasets["Cadets Utility"].loc[:, afsc_1: afsc_M])
    elif "c_utilities" in p:  # Create the matrix using the columns

        # Create utility matrix (numpy array NxM) from the utility/preference column information
        p["utility"] = np.zeros([p["N"], p["M"]])
        for i in range(p["N"]):
            for util in range(p['num_util']):
                j = np.where(p["c_preferences"][i, util] == p["afscs"])[0]
                if len(j) != 0:
                    p['utility'][i, j[0]] = p["c_utilities"][i, util]
    else:
        raise ValueError("Error. No cadet utility data provided which is required.")

    # Cadets "Real" Utility (after aggregating it with their ordinal rankings)
    if 'Cadets Utility (Final)' in datasets:  # Load in the cadet utility matrix
        p['cadet_utility'] = np.array(datasets["Cadets Utility (Final)"].loc[:, afsc_1: afsc_M])

    # Determine how we incorporate the cadets' preferences dataframe
    if "Cadets Preferences" in datasets:  # Load in the preferences dataframe directly
        p["c_pref_matrix"] = np.array(datasets["Cadets Preferences"].loc[:, afsc_1: afsc_M])
    elif "c_preferences" in p:  # Create the preferences dataframe using the columns

        # Create cadet preferences dataframe (numpy array NxM) from the preference column information
        p["c_pref_matrix"] = np.zeros([p["N"], p["M"]]).astype(int)
        for i in range(p["N"]):
            for util in range(p['P']):
                j = np.where(p["c_preferences"][i, util] == p["afscs"])[0]
                if len(j) != 0:
                    p['c_pref_matrix'][i, j[0]] = util + 1  # 1 is first choice (NOT 0)

    # AFSC preferences and utilities are not required initial data elements (Depending on how we solve, they may be)
    if "AFSCs Utility" in datasets:  # Load in the AFSC utility matrix
        p["afsc_utility"] = np.array(datasets["AFSCs Utility"].loc[:, afsc_1: afsc_M])
    if "AFSCs Preferences" in datasets:  # Load in the AFSC preferences dataframe
        p["a_pref_matrix"] = np.array(datasets["AFSCs Preferences"].loc[:, afsc_1: afsc_M])

    # All USAFA Cadets
    p['usafa_cadets'] = np.where(p['usafa'])[0]

    # Rated dataframes
    if "ROTC Rated Interest" in datasets:
        r_afscs = list(datasets['ROTC Rated Interest'].columns[1:])
        p['rr_interest_matrix'] = np.array(datasets['ROTC Rated Interest'].loc[:, r_afscs[0]:r_afscs[len(r_afscs) - 1]])
    if "ROTC Rated OM" in datasets:
        r_afscs = list(datasets['ROTC Rated OM'].columns[1:])
        p['rr_om_matrix'] = np.array(datasets['ROTC Rated OM'].loc[:, r_afscs[0]:r_afscs[len(r_afscs) - 1]])
        p['rr_om_cadets'] = np.array(datasets['ROTC Rated OM']['Cadet'])
    if "USAFA Rated OM" in datasets:
        r_afscs = list(datasets['USAFA Rated OM'].columns[1:])
        p['ur_om_matrix'] = np.array(datasets['USAFA Rated OM'].loc[:, r_afscs[0]:r_afscs[len(r_afscs) - 1]])
        p['ur_om_cadets'] = np.array(datasets['USAFA Rated OM']['Cadet'])
    if "OTS Rated OM" in datasets:
        r_afscs = list(datasets['OTS Rated OM'].columns[1:])
        p['or_om_matrix'] = np.array(datasets['OTS Rated OM'].loc[:, r_afscs[0]:r_afscs[len(r_afscs) - 1]])
        p['or_om_cadets'] = np.array(datasets['OTS Rated OM']['Cadet'])

    # Return dictionary of parameters
    return p

import_value_parameters_data(import_filepaths, parameters, num_breakpoints=24)

Imports and constructs value parameter sets for the model based on CSV definitions and analyst-defined breakpoints.

This function reads and compiles all information associated with value-based decision modeling, including objective functions, breakpoints, weights, and value constraints for both cadets and AFSCs. It supports multiple sets of value parameters, each potentially with different assumptions or constraints.

Parameters

  • import_filepaths : dict Dictionary containing paths to relevant files. Required keys:

    • "Model Input": folder path containing individual VP set CSVs.
    • "Value Parameters": CSV listing metadata about each VP set. Optional keys:
    • "Cadets Utility Constraints": file containing minimum cadet utility constraints by VP set.
  • parameters : dict Instance parameter dictionary already populated with "M", "N", and AFSC/cadet-level arrays.

  • num_breakpoints : int, optional (default=24) Number of breakpoints to discretize each value function unless exact breakpoints are provided.

Returns

dict A dictionary keyed by VP set names. Each value is a dictionary of value parameters containing:

  • Objective definitions and weights
  • Breakpoints (a) and values (f^hat)
  • Minimum utility constraints
  • AFSC objective indexed sets (K^A)
  • cadet_weight, afsc_weight, and associated metadata
  • VP set weights and local weights for combination logic

Raises

  • FileNotFoundError If required files are missing from the provided import paths.

  • ValueError If the "Value Parameters" file is missing or empty.

Notes

  • All AFSC objectives are indexed across O objectives per AFSC.
  • The function automatically parses objective weight strings and reconstructs value functions if needed.
  • For each VP set listed in the "Value Parameters" file, the function expects a matching CSV file named "VP <VP Name>.csv" (e.g., "VP Baseline.csv").
  • Supports optional use of "Cadets Utility Constraints" to impose per-cadet minimums.
  • If num_breakpoints is None, raw a/f^hat arrays are expected instead of constructing from strings.
  • Value functions are compressed after loading to remove redundant zero segments for performance.

See Also

Source code in afccp/data/processing.py
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
def import_value_parameters_data(import_filepaths, parameters, num_breakpoints=24):
    """
    Imports and constructs value parameter sets for the model based on CSV definitions and analyst-defined breakpoints.

    This function reads and compiles all information associated with value-based decision modeling, including
    objective functions, breakpoints, weights, and value constraints for both cadets and AFSCs. It supports multiple
    sets of value parameters, each potentially with different assumptions or constraints.

    Parameters
    ----------
    - import_filepaths : dict
      Dictionary containing paths to relevant files. Required keys:

        - `"Model Input"`: folder path containing individual VP set CSVs.
        - `"Value Parameters"`: CSV listing metadata about each VP set.
        Optional keys:
        - `"Cadets Utility Constraints"`: file containing minimum cadet utility constraints by VP set.

    - parameters : dict
      Instance parameter dictionary already populated with `"M"`, `"N"`, and AFSC/cadet-level arrays.

    - num_breakpoints : int, optional (default=24)
      Number of breakpoints to discretize each value function unless exact breakpoints are provided.

    Returns
    -------
    dict
    A dictionary keyed by VP set names. Each value is a dictionary of value parameters containing:

    - Objective definitions and weights
    - Breakpoints (`a`) and values (`f^hat`)
    - Minimum utility constraints
    - AFSC objective indexed sets (`K^A`)
    - `cadet_weight`, `afsc_weight`, and associated metadata
    - VP set weights and local weights for combination logic

    Raises
    ------
    - FileNotFoundError
      If required files are missing from the provided import paths.

    - ValueError
      If the `"Value Parameters"` file is missing or empty.

    Notes
    -----
    - All AFSC objectives are indexed across `O` objectives per AFSC.
    - The function automatically parses objective weight strings and reconstructs value functions if needed.
    - For each VP set listed in the `"Value Parameters"` file, the function expects a matching CSV file named
      `"VP <VP Name>.csv"` (e.g., `"VP Baseline.csv"`).
    - Supports optional use of `"Cadets Utility Constraints"` to impose per-cadet minimums.
    - If `num_breakpoints` is `None`, raw a/f^hat arrays are expected instead of constructing from strings.
    - Value functions are compressed after loading to remove redundant zero segments for performance.

    See Also
    --------
    - [`value_function_builder`](../../../afccp/reference/data/values/#data.values.value_function_builder)
    - [`create_segment_dict_from_string`](../../../afccp/reference/data/values/#data.values.create_segment_dict_from_string)
    - [`condense_value_functions`](../../../afccp/reference/data/values/#data.values.condense_value_functions)
    - [`value_parameters_sets_additions`](../../../afccp/reference/data/values/#data.values.value_parameters_sets_additions)
    """

    # Shorthand
    p = parameters
    afccp_vp = afccp.data.values  # Reduce the module name so it fits on one line

    # Import the cadets utility constraints dataframe if we have it.
    if "Cadets Utility Constraints" in import_filepaths:
        vp_cadet_df = afccp.globals.import_csv_data(import_filepaths["Cadets Utility Constraints"])
    else:
        vp_cadet_df = None

    # Import the "Value Parameters" dataframe if we have it. If we don't, the "vp_dict" will be "None"
    if "Value Parameters" in import_filepaths:
        overall_vp_df = afccp.globals.import_csv_data(import_filepaths["Value Parameters"])
    else:
        return None  # Nothing more we can do now (No "Value Parameters" determined yet for this instance)

    # Information about the sets of value parameters listed in the "Value Parameters" dataframe
    vp_names = np.array(overall_vp_df['VP Name'])
    num_vps = len(vp_names)
    vp_weights = np.ones(num_vps) * 100  # Initially all weighted at 100%
    if 'VP Weight' in overall_vp_df:
        vp_weights = np.array(overall_vp_df['VP Weight'])

    # Determine the filenames for the sets of value parameters (VP, VP_2, etc.)
    vp_files = {}
    for file in os.listdir(import_filepaths["Model Input"]):
        if ".csv" not in file:
            continue
        check_vp = file.split(" ")[1].replace(".csv", "")
        if check_vp in vp_names and "Utility" not in file:  # Don't want VP Global Utility included here
            vp_files[check_vp] = file

    # Loop through each set of value parameters and load it into the dictionary
    vp_dict = {}
    for v, vp_name in enumerate(vp_names):

        # Only load in the set of value parameters if we have it
        if vp_name in vp_files:
            filepath = import_filepaths["Model Input"] + vp_files[vp_name]
        else:
            print("WARNING. Value Parameter set '" + vp_name + "' listed in the 'Value Parameters' dataframe but does"
                                                               " not have its own dataframe (.csv) in 'Model Inputs'.")
            continue  # Skip this set of value parameters

        # Load value parameter set dataframe
        vp_df = afccp.globals.import_csv_data(filepath)
        M, O = p['M'], int(len(vp_df) / p['M'])  # Number of AFSCs (M) and number of AFSC objectives (O)

        # Initialize value parameters dictionary
        value_parameters = {'O': O, "afscs_overall_weight": np.array(overall_vp_df['AFSCs Weight'])[v],
                            "cadets_overall_weight": np.array(overall_vp_df['Cadets Weight'])[v],
                            "cadet_weight_function": np.array(overall_vp_df['Cadet Weight Function'])[v],
                            "afsc_weight_function": np.array(overall_vp_df['AFSC Weight Function'])[v],
                            "cadets_overall_value_min": np.array(overall_vp_df['Cadets Min Value'])[v],
                            "afscs_overall_value_min": np.array(overall_vp_df['AFSCs Min Value'])[v], "M": M,
                            "afsc_value_min": np.zeros(M), 'cadet_value_min': np.zeros(p['N']),
                            "objective_value_min": np.array([[" " * 20 for _ in range(O)] for _ in range(M)]),
                            "value_functions": np.array([[" " * 200 for _ in range(O)] for _ in range(M)]),
                            "constraint_type": np.zeros([M, O]), 'a': [[[] for _ in range(O)] for _ in range(M)],
                            "objective_target": np.zeros([M, O]), 'f^hat': [[[] for _ in range(O)] for _ in range(M)],
                            "objective_weight": np.zeros([M, O]), "afsc_weight": np.zeros(M),
                            'objectives': np.array(vp_df.loc[:int(len(vp_df) / M - 1), 'Objective']), "K^A": {},
                            'num_breakpoints': num_breakpoints}

        # If we have constraints specified for cadet utility
        if vp_cadet_df is not None:
            value_parameters["cadet_value_min"] = np.array(vp_cadet_df[vp_name]).astype(float)

        # Determine weights on cadets
        if 'merit_all' in parameters:
            value_parameters['cadet_weight'] = afccp_vp.cadet_weight_function(
                parameters['merit_all'], func=value_parameters['cadet_weight_function'])
        else:
            value_parameters['cadet_weight'] = afccp_vp.cadet_weight_function(
                parameters['merit'], func=value_parameters['cadet_weight_function'])

        # Load in value parameter data for each AFSC
        for j in p["J"]:  # These are Os (Ohs) not 0s (zeros)
            value_parameters["objective_target"][j, :] = np.array(vp_df.loc[j * O:(j * O + O - 1), 'Objective Target'])

            # Force objective weights to sum to 1. K^A is the set of objectives that have non-zero weights for each AFSC
            objective_weights = np.array(vp_df.loc[j * O:(j * O + O - 1), 'Objective Weight'])
            value_parameters["objective_weight"][j, :] = objective_weights / sum(objective_weights)
            value_parameters['K^A'][j] = np.where(value_parameters['objective_weight'][j, :] > 0)[0].astype(int)

            value_parameters["objective_value_min"][j, :] = np.array(vp_df.loc[j * O:(j * O + O - 1),
                                                                     'Min Objective Value'])
            value_parameters["constraint_type"][j, :] = np.array(vp_df.loc[j * O:(j * O + O - 1), 'Constraint Type'])
            value_parameters["value_functions"][j, :] = np.array(vp_df.loc[j * O:(j * O + O - 1), 'Value Functions'])
            value_parameters["afsc_weight"][j] = vp_df.loc[j * O, "AFSC Weight"]
            value_parameters["afsc_value_min"][j] = vp_df.loc[j * O, "Min Value"]
            cadets = parameters['I^E'][j]  # Indices of cadets that are eligible for this AFSC

            # Loop through each objective for this AFSC
            for k, objective in enumerate(value_parameters['objectives']):

                # Refactored column names
                if 'Function Breakpoints' in vp_df:
                    measure_col_name = 'Function Breakpoints'
                    value_col_name = 'Function Breakpoint Values'
                else:
                    measure_col_name = 'Function Breakpoint Measures (a)'
                    value_col_name = 'Function Breakpoint Values (f^hat)'

                # We import the functions directly from the breakpoints
                if num_breakpoints is None:
                    a_string = vp_df.loc[j * O + k, measure_col_name]
                    if type(a_string) == str:
                        value_parameters['a'][j][k] = [float(x) for x in a_string.split(",")]
                    fhat_string = vp_df.loc[j * O + k, value_col_name]
                    if type(fhat_string) == str:
                        value_parameters['f^hat'][j][k] = [float(x) for x in fhat_string.split(",")]

                # Recreate the functions from the vf strings
                else:
                    vf_string = value_parameters["value_functions"][j, k]
                    if vf_string != 'None':
                        if objective == 'Merit':
                            actual = np.mean(parameters['merit'][cadets])
                        elif objective == 'USAFA Proportion':
                            actual = np.mean(parameters['usafa'][cadets])
                        else:
                            actual = None

                        # Adjust target information for the "Combined Quota" objective
                        if objective == 'Combined Quota':
                            minimum, maximum = p['quota_min'][j], p['quota_max'][j]
                            target = p['quota_d'][j]  # Desired number of cadets
                        else:
                            minimum, maximum, target = None, None, value_parameters['objective_target'][j, k]

                        # Construct the value function (get the breakpoint coordinates)
                        segment_dict = afccp_vp.create_segment_dict_from_string(
                            vf_string, target, actual=actual, maximum=maximum, minimum=minimum)
                        value_parameters['a'][j][k], value_parameters['f^hat'][j][k] = afccp_vp.value_function_builder(
                            segment_dict, num_breakpoints=num_breakpoints)

        # Force AFSC weights to sum to 1
        value_parameters["afsc_weight"] = value_parameters["afsc_weight"] / sum(value_parameters["afsc_weight"])

        # "Condense" the value functions by removing unnecessary zeros
        value_parameters = afccp_vp.condense_value_functions(p, value_parameters)

        # Add indexed sets and subsets of AFSCs and AFSC objectives
        value_parameters = afccp_vp.value_parameters_sets_additions(p, value_parameters)

        # Save the value parameters to the dictionary
        vp_dict[vp_name] = copy.deepcopy(value_parameters)
        vp_dict[vp_name]['vp_weight'] = vp_weights[v]
        vp_dict[vp_name]['vp_local_weight'] = vp_weights[v] / sum(vp_weights)

    # Return the dictionary of value parameter sets
    return vp_dict

import_solutions_data(import_filepaths, parameters)

Imports and assembles cadet assignment solutions from a saved output file (<data_name> Solutions.csv). Optionally, more files are read in for Base/Training Course solutions.

This function reads solution files containing AFSC, base, and course assignments for each cadet, converts string labels to indexed arrays, and returns a structured dictionary containing all available solution configurations.

Parameters

  • import_filepaths : dict Dictionary containing filepaths to solution files. Expected keys:

    • "Solutions": required CSV file with AFSC assignments (one column per solution).
    • "Base Solutions": optional CSV with base assignments (same column names as above).
    • "Course Solutions": optional CSV with course assignments (same column names as above).
  • parameters : dict Dictionary of instance parameters. Must contain:

    • 'afscs': array of valid AFSC names.
    • 'bases': array of valid base names (if "Base Solutions" is provided).
    • 'courses': list of valid course arrays for each AFSC (if "Course Solutions" is provided).
    • 'S': sentinel index value for unmatched bases.

Returns

dict Dictionary mapping solution names to their data. Each solution entry contains:

  • 'name': name of the solution (from CSV column header)
  • 'afsc_array': array of assigned AFSC strings
  • 'j_array': array of assigned AFSC indices (matching parameters['afscs'])
  • 'base_array' (optional): array of base names (if base data is present)
  • 'b_array' (optional): array of base indices (or sentinel S if unmatched)
  • 'course_array' (optional): array of course names (if course data is present)
  • 'c_array' (optional): array of (j, c) tuples representing AFSC/course index pairs

Raises

  • FileNotFoundError If the required "Solutions" file is not present in import_filepaths.

Notes

  • If a course assignment is not found within any AFSC’s course list, a fallback value of (0, 0) is added and a warning is printed.
  • Assumes that all solution files share the same cadet ordering and column headers for consistent mapping.

See Also

Source code in afccp/data/processing.py
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
def import_solutions_data(import_filepaths, parameters):
    """
    Imports and assembles cadet assignment solutions from a saved output file (`<data_name> Solutions.csv`). Optionally,
    more files are read in for Base/Training Course solutions.

    This function reads solution files containing AFSC, base, and course assignments for each cadet,
    converts string labels to indexed arrays, and returns a structured dictionary containing all
    available solution configurations.

    Parameters
    ----------
    - import_filepaths : dict
    Dictionary containing filepaths to solution files. Expected keys:

        - `"Solutions"`: required CSV file with AFSC assignments (one column per solution).
        - `"Base Solutions"`: optional CSV with base assignments (same column names as above).
        - `"Course Solutions"`: optional CSV with course assignments (same column names as above).

    - parameters : dict
    Dictionary of instance parameters. Must contain:

        - `'afscs'`: array of valid AFSC names.
        - `'bases'`: array of valid base names (if `"Base Solutions"` is provided).
        - `'courses'`: list of valid course arrays for each AFSC (if `"Course Solutions"` is provided).
        - `'S'`: sentinel index value for unmatched bases.

    Returns
    -------
    dict
    Dictionary mapping solution names to their data. Each solution entry contains:

    - `'name'`: name of the solution (from CSV column header)
    - `'afsc_array'`: array of assigned AFSC strings
    - `'j_array'`: array of assigned AFSC indices (matching `parameters['afscs']`)
    - `'base_array'` (optional): array of base names (if base data is present)
    - `'b_array'` (optional): array of base indices (or sentinel `S` if unmatched)
    - `'course_array'` (optional): array of course names (if course data is present)
    - `'c_array'` (optional): array of `(j, c)` tuples representing AFSC/course index pairs

    Raises
    ------
    - FileNotFoundError
      If the required `"Solutions"` file is not present in `import_filepaths`.

    Notes
    -----
    - If a course assignment is not found within any AFSC’s course list, a fallback value of `(0, 0)` is added
      and a warning is printed.
    - Assumes that all solution files share the same cadet ordering and column headers for consistent mapping.

    See Also
    --------
    - [`import_csv_data`](../../../afccp/reference/globals/#globals.import_csv_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = parameters

    # Import the "Solutions" dataframe if we have it. If we don't, the "solutions_dict" will be "None"
    if "Solutions" in import_filepaths:
        solutions_df = afccp.globals.import_csv_data(import_filepaths["Solutions"])
    else:
        return None  # Nothing more we can do now (No solutions determined yet for this instance)

    # Get list of solution names
    solution_names = list(solutions_df.keys())[1:]

    # Loop through each solution, convert to a numpy array of AFSC indices, and then add it to the dictionary
    solutions = {}
    for solution_name in solution_names:

        # Convert solution of AFSC names to indices and then save it to the dictionary
        afsc_solution = np.array(solutions_df[solution_name])  # ["15A", "14N", "17X", ...]
        solution = {'j_array': np.array([np.where(p['afscs'] == afsc)[0][0] for afsc in afsc_solution]), # [3, 2, 5, ...]
                    'name': solution_name, 'afsc_array': afsc_solution}
        solutions[solution_name] = copy.deepcopy(solution)

    # If we have this extra component
    if 'Base Solutions' in import_filepaths:
        solutions_df = afccp.globals.import_csv_data(import_filepaths['Base Solutions'])

        # Get list of solution names
        solution_names = list(solutions_df.keys())[1:]

        # Loop through each solution in this dataframe and add the base assignments
        for solution_name in solution_names:
            base_solution = np.array(solutions_df[solution_name])
            solutions[solution_name]['base_array'] = base_solution
            solutions[solution_name]['b_array'] = np.array(
                [np.where(p['bases'] == base)[0][0] if base in base_solution else p['S'] for base in base_solution])

    # If we have this extra component
    if 'Course Solutions' in import_filepaths:
        solutions_df = afccp.globals.import_csv_data(import_filepaths['Course Solutions'])

        # Get list of solution names
        solution_names = list(solutions_df.keys())[1:]

        # Loop through each solution in this dataframe and add the course assignments
        for solution_name in solution_names:
            course_solution = np.array(solutions_df[solution_name])
            solutions[solution_name]['course_array'] = course_solution
            c_array = []
            for i, course in enumerate(course_solution):
                found = False
                for j in range(p['M']):
                    if course in p['courses'][j]:
                        c = np.where(p['courses'][j] == course)[0][0]
                        c_array.append((j, c))
                        found = True
                        break

                # This shouldn't happen!
                if not found:
                    print("Course '" + str(course) + "' not valid for cadet", i)
                    c_array.append((0, 0))
            solutions[solution_name]['c_array'] = np.array(c_array)

    # Return the dictionary of solutions
    return solutions

import_additional_data(import_filepaths, parameters)

Imports supplemental data files (if present) and updates the instance parameters dictionary.

This function loads optional model extensions including base and course assignments, preference matrices, and CASTLE-specific AFSC data. These components are not required for basic operation but enhance downstream modeling functionality (e.g., course scheduling, base optimization, CASTLE implementation).

Parameters

  • import_filepaths : dict Dictionary containing filepaths to additional optional data files. Expected keys include:

    • "Bases", "Bases Preferences", "Bases Utility"
    • "Courses", "Castle Input"
  • parameters : dict Dictionary of core model parameters. This dictionary will be updated with any new fields derived from imported files.

Returns

dict Updated parameter dictionary with the following optional fields added if available:

  • 'bases': Array of base names
  • 'S': Number of bases
  • 'base_min' / 'base_max': Base assignment bounds by AFSC
  • 'b_pref_matrix': Cadet base preference matrix
  • 'base_utility': Cadet base utility matrix
  • 'courses': Dict of course options by AFSC
  • 'course_start', 'course_min', 'course_max': Dicts with course metadata by AFSC
  • 'castle_afscs_arr', 'afpc_afscs_arr': Raw CASTLE vs AFPC AFSC labels
  • 'castle_afscs': Mapping of CASTLE AFSCs → AFPC AFSCs
  • 'J^CASTLE': CASTLE AFSCs mapped to indices in the AFPC AFSC array
  • 'ots_counts': OTS accession counts for CASTLE AFSCs
  • 'optimal_policy': Policy toggle per CASTLE AFSC
  • 'castle_q': Dictionary of breakpoint-based value functions:

    • 'a', 'f^hat': Breakpoints and values
    • 'r': Number of breakpoints
    • 'L': Breakpoint indices

Notes

  • Breakpoint information from "Castle Input" is stored under castle_q.
  • Course and base matrices are assumed to be properly aligned with the cadet and AFSC indices already in memory.
  • All newly imported data is optional and loaded only if the corresponding files are provided.

See Also

Source code in afccp/data/processing.py
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def import_additional_data(import_filepaths, parameters):
    """
    Imports supplemental data files (if present) and updates the instance parameters dictionary.

    This function loads optional model extensions including base and course assignments, preference matrices,
    and CASTLE-specific AFSC data. These components are not required for basic operation but enhance downstream
    modeling functionality (e.g., course scheduling, base optimization, CASTLE implementation).

    Parameters
    ----------
    - import_filepaths : dict
      Dictionary containing filepaths to additional optional data files. Expected keys include:

        - "Bases", "Bases Preferences", "Bases Utility"
        - "Courses", "Castle Input"

    - parameters : dict
      Dictionary of core model parameters. This dictionary will be updated with any new fields derived from imported files.

    Returns
    -------
    dict
    Updated parameter dictionary with the following optional fields added if available:

    - `'bases'`: Array of base names
    - `'S'`: Number of bases
    - `'base_min'` / `'base_max'`: Base assignment bounds by AFSC
    - `'b_pref_matrix'`: Cadet base preference matrix
    - `'base_utility'`: Cadet base utility matrix
    - `'courses'`: Dict of course options by AFSC
    - `'course_start'`, `'course_min'`, `'course_max'`: Dicts with course metadata by AFSC
    - `'castle_afscs_arr'`, `'afpc_afscs_arr'`: Raw CASTLE vs AFPC AFSC labels
    - `'castle_afscs'`: Mapping of CASTLE AFSCs → AFPC AFSCs
    - `'J^CASTLE'`: CASTLE AFSCs mapped to indices in the AFPC AFSC array
    - `'ots_counts'`: OTS accession counts for CASTLE AFSCs
    - `'optimal_policy'`: Policy toggle per CASTLE AFSC
    - `'castle_q'`: Dictionary of breakpoint-based value functions:

        - `'a'`, `'f^hat'`: Breakpoints and values
        - `'r'`: Number of breakpoints
        - `'L'`: Breakpoint indices

    Notes
    -----
    - Breakpoint information from `"Castle Input"` is stored under `castle_q`.
    - Course and base matrices are assumed to be properly aligned with the cadet and AFSC indices already in memory.
    - All newly imported data is optional and loaded only if the corresponding files are provided.

    See Also
    --------
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    - [`import_csv_data`](../../../afccp/reference/globals/#globals.import_csv_data)
    """

    # Shorthand
    p = parameters

    # Loop through the potential additional dataframes and import them if we have them
    datasets = {}
    for dataset in ["Bases", "Bases Preferences", "Bases Utility", "Courses", "Castle Input"]:

        # If we have the dataset, import it
        if dataset in import_filepaths:
            datasets[dataset] = afccp.globals.import_csv_data(import_filepaths[dataset])

    # First and last AFSC (for collecting matrices from dataframes)
    afsc_1, afsc_M = p["afscs"][0], p["afscs"][p["M"] - 1]

    # Extract data from "Bases.csv" if applicable
    if "Bases" in datasets:
        p['bases'] = np.array(datasets["Bases"]["Base"])  # Set of bases (names)
        p['S'] = len(p['bases'])  # Number of bases (S for "Station")
        p['base_min'] = np.array(datasets['Bases'].loc[:, afsc_1 + " Min": afsc_M + " Min"])  # Minimum base # by AFSC
        p['base_max'] = np.array(datasets['Bases'].loc[:, afsc_1 + " Max": afsc_M + " Max"])  # Maximum base # by AFSC

    # Extract data from "Base Preferences.csv" and "Base Utility.csv" if applicable
    for parameter, dataset in {'b_pref_matrix': 'Bases Preferences', 'base_utility': 'Bases Utility'}.items():
        if dataset in datasets:
            base_1, base_S = p['bases'][0], p['bases'][p['S'] - 1]
            p[parameter] = np.array(datasets[dataset].loc[:, base_1: base_S])

    # Extract data from "Courses.csv" if applicable
    if "Courses" in datasets:

        # Need a dictionary of indices of courses that apply to each AFSC
        afscs = np.array(datasets["Courses"]["AFSC"])
        afsc_courses = {j: np.where(afscs == p['afscs'][j])[0] for j in range(p['M'])}

        # Dictionary to translate parameter names to column names
        column_translation = {"Course": 'courses', 'Start Date': 'course_start', 'Min': 'course_min',
                              'Max': 'course_max'}

        # Get each parameter from the columns of this dataset
        for col, param in column_translation.items():
            arr = np.array(datasets['Courses'][col])  # Convert dataframe column to numpy array
            p[param] = {j: arr[afsc_courses[j]] for j in range(p['M'])}

    # Extract data from "Castle Input.csv" if applicable
    if "Castle Input" in datasets:

        # Load in AFSC arrays
        castle_afscs = np.array(datasets['Castle Input']['CASTLE AFSC'])
        afpc_afscs = np.array(datasets['Castle Input']['AFPC AFSC'])
        p['castle_afscs_arr'], p['afpc_afscs_arr'] = castle_afscs, afpc_afscs

        # Create dictionary of CASTLE AFSCs -> AFPC AFSCs (account for groupings)
        p['castle_afscs'], p['J^CASTLE'] = {}, {}
        for castle_afsc in np.unique(castle_afscs):
            indices = np.where(castle_afscs == castle_afsc)[0]
            p['castle_afscs'][castle_afsc] = afpc_afscs[indices]
            p['J^CASTLE'][castle_afsc] = np.array([np.where(p['afscs'] == afsc)[0][0] for afsc in afpc_afscs[indices]])

        # Initialize OTS counts and optimal policy dictionary
        p['ots_counts'], p['optimal_policy'] = {}, {}

        # Load in "q" dictionary information if it exists
        df = datasets['Castle Input']  # Shorthand
        if 'a' in df.columns:
            q = {'a': {}, 'f^hat': {}, 'r': {}, 'L': {}}
            for afsc in np.unique(castle_afscs):
                row = df.loc[df['CASTLE AFSC'] == afsc].head(1).iloc[0]

                # Add OTS count information and optimal policy information for this AFSC
                p['ots_counts'][afsc] = row['OTS Count']
                p['optimal_policy'][afsc] = row['Optimal']

                # Load breakpoint coordinates into q dictionary
                a_str, f_hat_str = str(row['a']), str(row['f^hat'])
                q['a'][afsc] = np.array([float(x) for x in a_str.split(",")])
                q['f^hat'][afsc] = np.array([float(x) for x in f_hat_str.split(",")])

                # Save additional information to q dictionary
                q['r'][afsc], q['L'][afsc] = len(q['a'][afsc]), np.arange(len(q['a'][afsc]))
                p['castle_q'] = q  # Save to parameters dictionary

    # Return parameters dictionary
    return p

export_afscs_data(instance)

Exports AFSC-level data from the given Instance object to a CSV file.

This function collects Air Force Specialty Code (AFSC) parameters stored in the instance, organizes them into a structured dataframe, and writes the result to disk at the location specified by instance.export_paths["AFSCs"].

Parameters

  • instance : Instance A fully initialized Instance object with a populated parameters dictionary and export_paths mapping. The instance must include AFSC data such as quotas, eligibility, preference counts, and any derived degree tier breakdowns.

Returns

  • None The function writes the output to disk and does not return a value.

Notes

  • The function dynamically detects and exports the following fields if present:

    • Core AFSC descriptors: name, accession group, STEM tag, base assignment
    • Quota targets: Desired, Estimated, Min, Max, PGL, commissioning source quotas
    • Course counts (T) and bubble caps (max_bubbles)
    • Eligibility counts per commissioning source
    • Degree tier distributions and tier counts (if "Deg Tiers" and "I^D" are available)
    • Cadet preference counts per AFSC (if "Choice Count" is present)
  • Only the first p["M"] AFSCs are included in the output. Any padding elements (e.g., "*") are excluded.

  • The output file is named "AFSCs.csv" and stored in the directory determined by instance.export_paths.

See Also

Source code in afccp/data/processing.py
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
def export_afscs_data(instance):
    """
    Exports AFSC-level data from the given `Instance` object to a CSV file.

    This function collects Air Force Specialty Code (AFSC) parameters stored in the instance,
    organizes them into a structured dataframe, and writes the result to disk at the location
    specified by `instance.export_paths["AFSCs"]`.

    Parameters
    ----------
    - instance : Instance
      A fully initialized `Instance` object with a populated `parameters` dictionary and `export_paths` mapping.
      The instance must include AFSC data such as quotas, eligibility, preference counts, and any
      derived degree tier breakdowns.

    Returns
    -------
    - None
      The function writes the output to disk and does not return a value.

    Notes
    -----
    - The function dynamically detects and exports the following fields if present:

        - Core AFSC descriptors: name, accession group, STEM tag, base assignment
        - Quota targets: Desired, Estimated, Min, Max, PGL, commissioning source quotas
        - Course counts (`T`) and bubble caps (`max_bubbles`)
        - Eligibility counts per commissioning source
        - Degree tier distributions and tier counts (if `"Deg Tiers"` and `"I^D"` are available)
        - Cadet preference counts per AFSC (if `"Choice Count"` is present)

    - Only the first `p["M"]` AFSCs are included in the output. Any padding elements (e.g., "*") are excluded.

    - The output file is named `"AFSCs.csv"` and stored in the directory determined by `instance.export_paths`.

    See Also
    --------
    - [`import_afscs_data`](../../../afccp/reference/data/processing/#data.processing.import_afscs_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = instance.parameters

    # Initialize dictionary translating AFSC parameters to their "AFSCs" df column counterparts
    afsc_parameters_to_columns = {"afscs": "AFSC", "acc_grp": "Accessions Group", "afscs_stem": "STEM",
                                  "usafa_quota": "USAFA Target", "rotc_quota": "ROTC Target", 'ots_quota': 'OTS Target',
                                  "pgl": "PGL Target", "quota_e": "Estimated",
                                  "quota_d": "Desired", "quota_min": "Min", "quota_max": "Max",
                                  'max_bubbles': 'Max (Bubbles)',
                                  "afsc_assign_base": 'Assign Base', 'T': 'Num Courses',
                                  'usafa_eligible_count': 'USAFA Eligible', 'rotc_eligible_count': 'ROTC Eligible',
                                  'ots_eligible_count': "OTS Eligible"}

    # Loop through each parameter in the translation dictionary to create dictionary of "AFSCs" columns
    afscs_columns = {}
    for parameter in afsc_parameters_to_columns:

        # If we have the parameter, create the column
        if parameter in p:
            col_name = afsc_parameters_to_columns[parameter]
            afscs_columns[col_name] = p[parameter][:p["M"]]  # Don't want to include the *!

    # Create the degree tier columns
    if "Deg Tiers" in p:
        for t in range(4):
            afscs_columns["Deg Tier " + str(t + 1)] = p["Deg Tiers"][:, t]

    # Degree Tier Counts
    if "Tier 1" in p['I^D']:
        for t in ['1', '2', '3', '4']:
            afscs_columns['Deg Tier ' + t + ' Count'] = [len(p['I^D']['Tier ' + t][j]) for j in p['J']]

    # Preference Counts
    if 'Choice Count' in p:
        for choice in p['Choice Count']:
            afscs_columns['Choice ' + str(choice + 1)] = p['Choice Count'][choice]

    # Create dataframe
    afscs_df = pd.DataFrame(afscs_columns)

    # Export 'AFSCs' dataframe
    afscs_df.to_csv(instance.export_paths["AFSCs"], index=False)

export_cadets_data(instance)

Exports cadet-level data from the given Instance object to a CSV file.

This function builds the "Cadets" dataframe from internal model parameters stored in the instance, capturing individual cadet characteristics, preferences, and qualification data (if available). The output is saved to disk at the location specified by instance.export_paths["Cadets"].

Parameters

  • instance : Instance A fully initialized Instance object containing model parameters (parameters) and a configured export path for the "Cadets" CSV file.

Returns

  • None The function writes the cadet-level data to disk and does not return a value.

Notes

  • The following cadet-level attributes will be included if present in parameters:

    • Basic profile: Cadet ID, gender, race, ethnicity, accession group, STEM tag, ASC codes
    • Assignment metadata: must-match flags, base/course preferences, assigned AFSC
    • Merit metrics: raw merit, real merit
    • Training data: start date, preference rankings, course/base weights and thresholds
    • Utility and preference columns: if present, the full c_utilities and c_preferences matrices will be exported
    • Qualification data: if a qual matrix is present, columns are added for each AFSC (e.g., qual_17X, qual_21R)
  • The preference and utility columns are labeled as Pref_1, Pref_2, ..., Util_1, Util_2, etc.

  • The output is saved as "Cadets.csv" under the directory given by instance.export_paths.

See Also

Source code in afccp/data/processing.py
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def export_cadets_data(instance):
    """
    Exports cadet-level data from the given `Instance` object to a CSV file.

    This function builds the "Cadets" dataframe from internal model parameters stored in the instance,
    capturing individual cadet characteristics, preferences, and qualification data (if available).
    The output is saved to disk at the location specified by `instance.export_paths["Cadets"]`.

    Parameters
    ----------
    - instance : Instance
      A fully initialized `Instance` object containing model parameters (`parameters`) and a configured
      export path for the "Cadets" CSV file.

    Returns
    -------
    - None
      The function writes the cadet-level data to disk and does not return a value.

    Notes
    -----
    - The following cadet-level attributes will be included if present in `parameters`:

        - Basic profile: Cadet ID, gender, race, ethnicity, accession group, STEM tag, ASC codes
        - Assignment metadata: must-match flags, base/course preferences, assigned AFSC
        - Merit metrics: raw merit, real merit
        - Training data: start date, preference rankings, course/base weights and thresholds
        - Utility and preference columns: if present, the full `c_utilities` and `c_preferences` matrices will be exported
        - Qualification data: if a `qual` matrix is present, columns are added for each AFSC (e.g., `qual_17X`, `qual_21R`)

    - The preference and utility columns are labeled as `Pref_1`, `Pref_2`, ..., `Util_1`, `Util_2`, etc.
    - The output is saved as `"Cadets.csv"` under the directory given by `instance.export_paths`.

    See Also
    --------
    - [`import_cadets_data`](../../../afccp/reference/data/processing/#data.processing.import_cadets_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = instance.parameters

    # Initialize dictionary translating 'AFSCs' df columns to their parameter counterparts
    cadet_parameters_to_columns = {"cadets": "Cadet", "must_match": "Must Match",
                                   "assigned": "Assigned", "acc_grp_constraint": "Accessions Group",
                                   'training_start': 'Start Date', 'training_preferences': 'Start Pref',
                                   'base_threshold': 'Base Threshold', 'training_threshold': 'Course Threshold',
                                   'weight_afsc': 'AFSC Weight', 'weight_base': 'Base Weight',
                                   'weight_course': 'Course Weight',
                                   "sf_om": "SF OM", 'usafa': 'USAFA', 'soc': 'SOC',
                                   'male': 'Male', 'minority': 'Minority',
                                   'race': 'Race', "ethnicity": "Ethnicity", 'asc1': 'ASC1', 'asc2': 'ASC2',
                                   'stem': 'STEM', 'cip1': 'CIP1', 'cip2': 'CIP2', 'merit': 'Merit',
                                   'merit_all': 'Real Merit', 'last_afsc': 'Least Desired AFSC',
                                   'second_to_last_afscs': 'Second Least Desired AFSCs'}

    # Loop through each parameter in the translation dictionary to get "Cadets" dataframe column counterpart
    cadets_columns = {}
    for parameter in cadet_parameters_to_columns:

        # If we have the parameter, we create its column
        if parameter in p:
            col_name = cadet_parameters_to_columns[parameter]
            cadets_columns[col_name] = p[parameter]

    # If we had the cadet pafccp/reference/utility columns before, we'll add them back in
    if "c_preferences" in p:

        # Add utility columns
        for c in range(p["num_util"]):
            cadets_columns["Util_" + str(c + 1)] = p["c_utilities"][:, c]

        # Add preference columns
        for c in range(p["P"]):
            cadets_columns["Pref_" + str(c + 1)] = p["c_preferences"][:, c]

    # If we have the qual matrix, we add that here
    if "qual" in p:

        for j, afsc in enumerate(p["afscs"][:p["M"]]):
            cadets_columns["qual_" + afsc] = p['qual'][:, j]

    # Create dataframe
    cadets_df = pd.DataFrame(cadets_columns)

    # Export 'Cadets' dataframe
    cadets_df.to_csv(instance.export_paths["Cadets"], index=False)

export_afsc_cadet_matrices_data(instance)

Exports cadet-AFSC utility and preference matrices from the given Instance object to CSV files.

This function checks for the presence of known matrix-style parameters in the model (e.g., utility values, preference rankings, interest scores) and exports them to disk. Each matrix is stored as a CSV with cadets as rows and AFSCs as columns (or vice versa), depending on the context.

Parameters

  • instance : Instance A fully initialized Instance object containing model parameters (parameters), value parameters (value_parameters), and export paths.

Returns

  • None The function writes one or more matrix-style datasets to disk if they exist.

Notes

  • The following parameters will be exported if present:

    • utility: Cadet utilities over all AFSCs → "Cadets Utility"
    • c_pref_matrix: Cadet preferences over all AFSCs → "Cadets Preferences"
    • afsc_utility: AFSC utilities over all cadets → "AFSCs Utility"
    • a_pref_matrix: AFSC preferences over all cadets → "AFSCs Preferences"
    • rr_interest_matrix: ROTC-rated interest scores → "ROTC Rated Interest"
    • rr_om_matrix: ROTC OM values → "ROTC Rated OM"
    • ur_om_matrix: USAFA OM values → "USAFA Rated OM"
    • or_om_matrix: OTS OM values → "OTS Rated OM"
    • cadet_utility: Finalized cadet utility values → "Cadets Utility (Final)"
    • c_selected_matrix: Final cadet selection matrix → "Cadets Selected"
    • a_bucket_matrix: AFSC bucket matrix → "AFSCs Buckets"
  • Each exported dataframe will have a "Cadet" column followed by one column per AFSC in the relevant set. The set of AFSCs may vary depending on whether the data is specific to a commissioning source (SOC).

  • Datasets related to specific SOCs (e.g., "ROTC Rated OM") use filtered cadet subsets and AFSCs determined by determine_soc_rated_afscs().

See Also

Source code in afccp/data/processing.py
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
def export_afsc_cadet_matrices_data(instance):
    """
    Exports cadet-AFSC utility and preference matrices from the given `Instance` object to CSV files.

    This function checks for the presence of known matrix-style parameters in the model (e.g., utility values,
    preference rankings, interest scores) and exports them to disk. Each matrix is stored as a CSV with cadets
    as rows and AFSCs as columns (or vice versa), depending on the context.

    Parameters
    ----------
    - instance : Instance
      A fully initialized `Instance` object containing model parameters (`parameters`),
      value parameters (`value_parameters`), and export paths.

    Returns
    -------
    - None
      The function writes one or more matrix-style datasets to disk if they exist.

    Notes
    -----
    - The following parameters will be exported if present:

        - `utility`: Cadet utilities over all AFSCs → `"Cadets Utility"`
        - `c_pref_matrix`: Cadet preferences over all AFSCs → `"Cadets Preferences"`
        - `afsc_utility`: AFSC utilities over all cadets → `"AFSCs Utility"`
        - `a_pref_matrix`: AFSC preferences over all cadets → `"AFSCs Preferences"`
        - `rr_interest_matrix`: ROTC-rated interest scores → `"ROTC Rated Interest"`
        - `rr_om_matrix`: ROTC OM values → `"ROTC Rated OM"`
        - `ur_om_matrix`: USAFA OM values → `"USAFA Rated OM"`
        - `or_om_matrix`: OTS OM values → `"OTS Rated OM"`
        - `cadet_utility`: Finalized cadet utility values → `"Cadets Utility (Final)"`
        - `c_selected_matrix`: Final cadet selection matrix → `"Cadets Selected"`
        - `a_bucket_matrix`: AFSC bucket matrix → `"AFSCs Buckets"`

    - Each exported dataframe will have a `"Cadet"` column followed by one column per AFSC in the relevant set.
      The set of AFSCs may vary depending on whether the data is specific to a commissioning source (SOC).

    - Datasets related to specific SOCs (e.g., `"ROTC Rated OM"`) use filtered cadet subsets and
      AFSCs determined by `determine_soc_rated_afscs()`.

    See Also
    --------
    - [`determine_soc_rated_afscs`](../../../afccp/reference/data/preferences/#data.preferences.determine_soc_rated_afscs)
    - [`import_afsc_cadet_matrices_data`](../../../afccp/reference/data/processing/#data.processing.import_afsc_cadet_matrices_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p, vp = instance.parameters, instance.value_parameters

    # Dataset name translations
    parameter_trans_dict = {"utility": "Cadets Utility", "c_pref_matrix": "Cadets Preferences",
                            "afsc_utility": "AFSCs Utility", "a_pref_matrix": "AFSCs Preferences",
                            "rr_interest_matrix": "ROTC Rated Interest", "rr_om_matrix": "ROTC Rated OM",
                            'ur_om_matrix': 'USAFA Rated OM', 'or_om_matrix': 'OTS Rated OM',
                           'cadet_utility': 'Cadets Utility (Final)',
                            'c_selected_matrix': 'Cadets Selected', 'a_bucket_matrix': 'AFSCs Buckets'
                            }

    # Get all rated AFSCs
    all_rated_afscs = p['afscs'][p['J^Rated']]

    # Loop through each potential dataset to export
    for parameter in parameter_trans_dict:

        # If we have this dataset, we export it
        if parameter in p:
            dataset = parameter_trans_dict[parameter]

            # Construct the dataframe
            if 'ROTC' in dataset:
                cadet_indices = p["Rated Cadets"]['rotc']
                pref_df = pd.DataFrame({"Cadet": p['cadets'][cadet_indices]})
                afscs = afccp.data.preferences.determine_soc_rated_afscs(
                    soc='rotc', all_rated_afscs=all_rated_afscs)
            elif 'USAFA' in dataset:
                cadet_indices = p["Rated Cadets"]['usafa']
                pref_df = pd.DataFrame({"Cadet": p['cadets'][cadet_indices]})
                afscs = afccp.data.preferences.determine_soc_rated_afscs(
                    soc='usafa', all_rated_afscs=all_rated_afscs)
            elif 'OTS' in dataset:
                cadet_indices = p["Rated Cadets"]['ots']
                pref_df = pd.DataFrame({"Cadet": p['cadets'][cadet_indices]})
                afscs = afccp.data.preferences.determine_soc_rated_afscs(
                    soc='ots', all_rated_afscs=all_rated_afscs)
            else:
                pref_df = pd.DataFrame({"Cadet": p["cadets"]})
                afscs = p["afscs"][:p["M"]]

            # Add the AFSC columns
            for j, afsc in enumerate(afscs):
                pref_df[afsc] = p[parameter][:, j]

            # Export the dataset
            pref_df.to_csv(instance.export_paths[dataset], index=False)

export_value_parameters_data(instance)

Export value parameter datasets and related information to CSV files for analysis.

This function extracts and exports optimization value parameter sets, global utility matrices (if available), and cadet-specific constraints. It supports multiple value parameter configurations by exporting separate files per set. This facilitates analysis, debugging, or visualization of value-based multi-objective optimization.

Parameters

  • instance : Instance A configured instance of the CadetCareerProblem class, including:

    • vp_dict: Dictionary of value parameter sets
    • value_parameters: Active value parameter configuration
    • parameters: General instance parameters (e.g., AFSCs, cadets)
    • export_paths: File paths for saving exports

Returns

None The function writes multiple CSV files to disk for each available dataset.

This command will generate: - A separate CSV file for each set of value parameters (e.g., weights, targets, value functions) - An overall summary CSV file of value parameter metadata - A cadet-level constraints CSV file (min values per cadet per VP set) - A global utility matrix CSV (if global_utility is present in a VP set)

Notes

  • Value function breakpoints a and values f^hat are stored as comma-separated strings for readability.
  • Objective weights are scaled to a 0–100 range and normalized per AFSC.
  • The output files use naming conventions like:

    • {data_name} {vp_name}.csv
    • {data_name} {vp_name} Global Utility.csv
    • These files are versioned if the instance's data version is not "Default".

See Also

Source code in afccp/data/processing.py
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
def export_value_parameters_data(instance):
    """
    Export value parameter datasets and related information to CSV files for analysis.

    This function extracts and exports optimization value parameter sets, global utility matrices (if available),
    and cadet-specific constraints. It supports multiple value parameter configurations by exporting separate
    files per set. This facilitates analysis, debugging, or visualization of value-based multi-objective optimization.

    Parameters
    ----------
    - instance : Instance
      A configured instance of the CadetCareerProblem class, including:

        - `vp_dict`: Dictionary of value parameter sets
        - `value_parameters`: Active value parameter configuration
        - `parameters`: General instance parameters (e.g., AFSCs, cadets)
        - `export_paths`: File paths for saving exports

    Returns
    -------
    None
      The function writes multiple CSV files to disk for each available dataset.

    This command will generate:
    - A separate CSV file for each set of value parameters (e.g., weights, targets, value functions)
    - An overall summary CSV file of value parameter metadata
    - A cadet-level constraints CSV file (min values per cadet per VP set)
    - A global utility matrix CSV (if `global_utility` is present in a VP set)

    Notes
    -----
    - Value function breakpoints `a` and values `f^hat` are stored as comma-separated strings for readability.
    - Objective weights are scaled to a 0–100 range and normalized per AFSC.
    - The output files use naming conventions like:

        - `{data_name} {vp_name}.csv`
        - `{data_name} {vp_name} Global Utility.csv`
    - These files are versioned if the instance's data version is not `"Default"`.

    See Also
    --------
    - [`import_value_parameters_data`](../../../afccp/reference/data/processing/#data.processing.import_value_parameters_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = instance.parameters

    # Error data
    if instance.vp_dict is None:
        return None  # No value parameters to export!

    # Determine how we're going to show merit for context in the Cadet Constraints dataframe
    merit_col = "merit"
    if "merit_all" in p:
        merit_col = "merit_all"

    # Initialize dataframes
    vp_cadet_df = pd.DataFrame({"Cadet": p["cadets"], "Merit": p[merit_col]})
    vp_overall_df = pd.DataFrame({})

    # Loop through each set of value parameters
    for v, vp_name in enumerate(list(instance.vp_dict.keys())):
        vp = instance.vp_dict[vp_name]

        # Initialize Value Function breakpoint arrays
        a_strings = np.array([[" " * 400 for _ in vp["K"]] for _ in p["J"]])
        fhat_strings = np.array([[" " * 400 for _ in vp["K"]] for _ in p["J"]])
        for j, afsc in enumerate(p['afscs'][:p["M"]]):
            for k, objective in enumerate(vp['objectives']):
                a_string_list = [str(x) for x in vp['a'][j][k]]
                a_strings[j, k] = ",".join(a_string_list)
                fhat_strings_list = [str(x) for x in vp['f^hat'][j][k]]
                fhat_strings[j, k] = ",".join(fhat_strings_list)

        # Flatten the 2-d arrays to convert them into one long list that is sorted by AFSC and then by objective
        objective_value_min = np.ndarray.flatten(vp['objective_value_min'])
        constraint_type = np.ndarray.flatten(vp['constraint_type'])
        objective_target = np.ndarray.flatten(vp['objective_target'])
        value_functions = np.ndarray.flatten(vp['value_functions'])
        breakpoint_a = np.ndarray.flatten(a_strings)
        breakpoint_fhat = np.ndarray.flatten(fhat_strings)

        # AFSC objective swing weights
        max_weights = np.max(vp['objective_weight'], axis=1)
        ow = np.array([[vp['objective_weight'][j, k] / max_weights[j] for k in vp["K"]] for j in p["J"]])
        objective_weight = np.ndarray.flatten(np.around(ow * 100, 3))

        # Repeating objectives
        objectives = np.tile(vp['objectives'], p['M'])

        # Repeating AFSCs
        afscs = np.ndarray.flatten(np.array(list(np.repeat(p['afscs'][j], vp['O']) for j in p["J"])))
        afsc_value_min = np.ndarray.flatten(np.array(list(np.repeat(vp['afsc_value_min'][j], vp['O']) for j in p["J"])))

        # AFSC swing weights
        afsc_weight = np.around(vp['afsc_weight'] / np.max(vp['afsc_weight']) * 100, 3)
        afsc_weight = np.repeat(afsc_weight, vp['O'])

        # Create the "vp_df"
        vp_df = pd.DataFrame({'AFSC': afscs, 'Objective': objectives, 'Objective Weight': objective_weight,
                              'Objective Target': objective_target, 'AFSC Weight': afsc_weight,
                              'Min Value': afsc_value_min, 'Min Objective Value': objective_value_min,
                              'Constraint Type': constraint_type, 'Function Breakpoint Measures (a)': breakpoint_a,
                              'Function Breakpoint Values (f^hat)': breakpoint_fhat,
                              'Value Functions': value_functions})

        # Add the minimum value column for this set of value parameters to the cadets df
        vp_cadet_df[vp_name] = vp["cadet_value_min"]

        # Initialize overall vp column dictionary
        overall_vp_columns = {'VP Name': vp_name,
                              'Cadets Weight': vp['cadets_overall_weight'],
                              'AFSCs Weight': vp['afscs_overall_weight'],
                              'Cadets Min Value': vp['cadets_overall_value_min'],
                              'AFSCs Min Value': vp['afscs_overall_value_min'],
                              'Cadet Weight Function': vp['cadet_weight_function'],
                              'AFSC Weight Function': vp['afsc_weight_function']}

        # Add the row for this set of value parameters to the overall df
        for col in overall_vp_columns:
            vp_overall_df.loc[v, col] = overall_vp_columns[col]

        # Determine extension of VP file (in case it's a different version of data)
        if instance.data_version == "Default":
            extension = ".csv"
        else:
            extension = " (" + instance.data_version + ").csv"

        # Export 'VP' dataframe
        vp_df.to_csv(instance.export_paths["Model Input"] + instance.data_name + " " + vp_name + extension, index=False)

        # Create "Global Utility" dataframe if it's in the value parameters
        if "global_utility" in vp:
            gu_df = pd.DataFrame({'Cadet': p['cadets']})
            for j, afsc in enumerate(p['afscs'][:p['M']]):
                gu_df[afsc] = vp['global_utility'][:, j]

            # Export "Global Utility" dataframe
            filename = instance.data_name + " " + vp_name + " Global Utility" + extension
            gu_df.to_csv(instance.export_paths["Model Input"] + filename, index=False)

    # Export 'Value Parameters' dataframe
    vp_overall_df.to_csv(instance.export_paths["Value Parameters"], index=False)

    # Export 'Cadets Utility Constraints' dataframe
    vp_cadet_df.to_csv(instance.export_paths["Cadets Utility Constraints"], index=False)

export_solutions_data(instance)

Export cadet-to-AFSC solution assignments to CSV files.

This function exports all available cadet solution assignments (including AFSC, base, and course solutions) to CSV files for downstream analysis, visualization, or comparison. Each solution is saved as a column in the exported file, enabling side-by-side comparison of multiple optimization outcomes.

Parameters

  • instance : Instance The problem instance containing:

    • parameters – model parameter dictionary
    • solutions – dictionary of cadet-to-AFSC assignments by solution name
    • export_paths – dictionary of destination paths for saving outputs

Returns

None The function writes 1 to 3 CSV files to disk, depending on available solution components.

This exports: - Solutions.csv: Main cadet-to-AFSC assignment matrix - Base Solutions.csv: Optional cadet-to-base assignments, if present - Course Solutions.csv: Optional cadet-to-course assignments, if present

Notes

  • Each file contains cadets in the first column and one or more solution columns following.
  • Solution names (keys from instance.solutions) define the column headers.
  • The function safely skips missing data (e.g., base or course assignments are only exported if they exist).
  • Used primarily to track scenario-based solution outputs from multi-run experiments.

See Also

Source code in afccp/data/processing.py
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
def export_solutions_data(instance):
    """
    Export cadet-to-AFSC solution assignments to CSV files.

    This function exports all available cadet solution assignments (including AFSC, base, and course solutions)
    to CSV files for downstream analysis, visualization, or comparison. Each solution is saved as a column in
    the exported file, enabling side-by-side comparison of multiple optimization outcomes.

    Parameters
    ----------
    - instance : Instance
        The problem instance containing:

        - `parameters` – model parameter dictionary
        - `solutions` – dictionary of cadet-to-AFSC assignments by solution name
        - `export_paths` – dictionary of destination paths for saving outputs

    Returns
    -------
    None
        The function writes 1 to 3 CSV files to disk, depending on available solution components.

    This exports:
    - `Solutions.csv`: Main cadet-to-AFSC assignment matrix
    - `Base Solutions.csv`: Optional cadet-to-base assignments, if present
    - `Course Solutions.csv`: Optional cadet-to-course assignments, if present

    Notes
    -----
    - Each file contains cadets in the first column and one or more solution columns following.
    - Solution names (keys from `instance.solutions`) define the column headers.
    - The function safely skips missing data (e.g., base or course assignments are only exported if they exist).
    - Used primarily to track scenario-based solution outputs from multi-run experiments.

    See Also
    --------
    - [`import_solutions_data`](../../../afccp/reference/data/processing/#data.processing.import_solutions_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = instance.parameters

    # Error data
    if instance.solutions is None:
        return None  # No solutions to export!

    # Initialize solutions dataframe
    solutions_df = pd.DataFrame({"Cadet": p["cadets"]})

    # Loop through each solution and add it to the dataframe
    for solution_name in instance.solutions:
        solutions_df[solution_name] = instance.solutions[solution_name]['afsc_array']

    # Export 'Solutions' dataframe
    solutions_df.to_csv(instance.export_paths["Solutions"], index=False)

    # Initialize solutions dataframe
    extra_dict = {"Base Solutions": "base_array", "Course Solutions": "course_array"}
    for df_name, key in extra_dict.items():

        # Get list of solutions that have this extra component
        solution_names_found = []
        for solution_name in instance.solutions:
            if key in instance.solutions[solution_name]:
                solution_names_found.append(solution_name)

        # If we have at least one solution with this base or course component, we create this dataframe
        if len(solution_names_found) > 0:
            solutions_df = pd.DataFrame({"Cadet": p["cadets"]})

            # Loop through each solution with this component and add it to the dataframe
            for solution_name in solution_names_found:
                solutions_df[solution_name] = instance.solutions[solution_name][key]

            # Export extra 'Solutions' dataframe
            solutions_df.to_csv(instance.export_paths[df_name], index=False)

export_additional_data(instance)

Export additional configuration and metadata to CSV files.

This function exports all supplementary datasets associated with the problem instance, including base assignments, base preferences, utility scores, training course data, and CASTLE-AFSC mappings. These datasets are derived from the instance.parameters dictionary and written to disk using paths from instance.export_paths.

Parameters

  • instance : Instance The problem instance containing:

    • parameters – dictionary of model inputs and outputs
    • export_paths – dictionary of file paths for each dataset

Returns

None Outputs are written to CSV files; no value is returned.

This generates the following (if applicable): - Bases.csv: Min/max cadet assignments per AFSC at each base - Bases Preferences.csv: Cadet preferences over bases - Bases Utility.csv: Cadet utility scores for each base - Courses.csv: Course-level details per AFSC (min/max/start) - Castle Input.csv: CASTLE-to-AFPC AFSC mappings with optional value curves

Notes

  • The export is conditional: datasets are only written if their associated parameters exist in instance.parameters.
  • CASTLE-related data (castle_q, castle_afscs_arr, etc.) must be present to trigger Castle Input.csv export.
  • Base utility and preference matrices are assumed to be cadet-by-base numpy arrays.

See Also

Source code in afccp/data/processing.py
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
def export_additional_data(instance):
    """
    Export additional configuration and metadata to CSV files.

    This function exports all supplementary datasets associated with the problem instance, including base
    assignments, base preferences, utility scores, training course data, and CASTLE-AFSC mappings. These
    datasets are derived from the `instance.parameters` dictionary and written to disk using paths from
    `instance.export_paths`.

    Parameters
    ----------
    - instance : Instance
        The problem instance containing:

        - `parameters` – dictionary of model inputs and outputs
        - `export_paths` – dictionary of file paths for each dataset

    Returns
    -------
    None
        Outputs are written to CSV files; no value is returned.

    This generates the following (if applicable):
    - `Bases.csv`: Min/max cadet assignments per AFSC at each base
    - `Bases Preferences.csv`: Cadet preferences over bases
    - `Bases Utility.csv`: Cadet utility scores for each base
    - `Courses.csv`: Course-level details per AFSC (min/max/start)
    - `Castle Input.csv`: CASTLE-to-AFPC AFSC mappings with optional value curves

    Notes
    -----
    - The export is conditional: datasets are only written if their associated parameters exist in `instance.parameters`.
    - CASTLE-related data (`castle_q`, `castle_afscs_arr`, etc.) must be present to trigger `Castle Input.csv` export.
    - Base utility and preference matrices are assumed to be cadet-by-base numpy arrays.

    See Also
    --------
    - [`import_additional_data`](../../../afccp/reference/data/processing/#data.processing.import_additional_data)
    - [`initialize_file_information`](../../../afccp/reference/data/processing/#data.processing.initialize_file_information)
    """

    # Shorthand
    p = instance.parameters

    # See if we can export the "Bases" csv file
    if "bases" in p:

        # Initialize dataframe
        df = pd.DataFrame({"Base": p['bases']})

        # Add "minimum" # to assign to each base by AFSC
        for j in p['J']:
            afsc = p['afscs'][j]
            df[afsc + ' Min'] = p['base_min'][:, j]

        # Add "maximum" # to assign to each base by AFSC
        for j in p['J']:
            afsc = p['afscs'][j]
            df[afsc + ' Max'] = p['base_max'][:, j]

        # Export the dataset
        df.to_csv(instance.export_paths["Bases"], index=False)

    # Export base preferences/utility if applicable
    for parameter, dataset in {'b_pref_matrix': 'Bases Preferences', 'base_utility': 'Bases Utility'}.items():
        if parameter in p:

            # Initialize dataframe
            df = pd.DataFrame({"Cadet": p['cadets']})

            # Add base columns
            for b, base in enumerate(p['bases']):
                df[base] = p[parameter][:, b]

            # Export the dataset
            df.to_csv(instance.export_paths[dataset], index=False)

    # Export training course data if applicable
    if 'courses' in p:

        # Dictionary to translate parameter names to column names
        column_translation = {"Course": 'courses', 'Start Date': 'course_start', 'Min': 'course_min', 'Max': 'course_max'}

        # Initialize dictionary of new columns
        new_cols = {'AFSC': [p['afscs'][j] for j in p['J'] for _ in range(p['T'][j])]}

        # Create each column for this dataset
        for col, param in column_translation.items():
            new_cols[col] = [p[param][j][c] for j in p['J'] for c in range(p['T'][j])]

        # Create dataframe
        df = pd.DataFrame(new_cols)

        # Export the dataframe
        df.to_csv(instance.export_paths['Courses'], index=False)

    # Export Castle AFSCs data
    if 'castle_afscs_arr' in p:

        # Create dataframe
        df = pd.DataFrame({'AFPC AFSC': p['afpc_afscs_arr'],
                           'CASTLE AFSC': p['castle_afscs_arr']})

        # Add in value curve data
        if 'castle_q' in p:
            df['a'] = [', '.join(np.around(p['castle_q']['a'][afsc], 3).astype(str)) for afsc in p['castle_afscs_arr']]
            df['f^hat'] = \
                [', '.join(np.around(p['castle_q']['f^hat'][afsc], 3).astype(str)) for afsc in p['castle_afscs_arr']]
            df['Optimal'] = [p['optimal_policy'][afsc] for afsc in p['castle_afscs_arr']]
            df['OTS Count'] = [p['ots_counts'][afsc] for afsc in p['castle_afscs_arr']]

        # Export the dataframe
        df.to_csv(instance.export_paths['Castle Input'], index=False)

export_solution_results(instance, filepath)

Export a comprehensive Excel workbook of solution results.

This function generates an Excel file containing detailed outputs from a solved cadet-AFSC assignment instance, including objective values, cadet assignments, constraint violations, and other performance metrics. The resulting Excel workbook supports deep post-solution analysis and includes conditional formatting for visual clarity.

Parameters

  • instance : Instance An object representing the solved assignment problem. Must contain:

  • parameters (dict): Problem data

  • value_parameters (dict): Objective metadata and weights
  • solution (dict): Final solution output (e.g., assignments, utilities, choice rankings)
  • mdl_p (dict): Metadata including formatting options
  • filepath : str Full path where the Excel file will be saved (e.g., "output/solution_results.xlsx")

Returns

None Writes an .xlsx file to disk containing multiple sheets of structured solution data.

Excel Output Includes

  • Main: High-level metrics, objective value, choice counts, and performance indicators
  • Objective Measures: AFSC scores for each weighted objective
  • Constraint Fails: Constraint violations by AFSC
  • Objective Values: Weighted performance per AFSC with visual scoring heatmaps
  • Solution: Per-cadet assignment breakdown with preferences, utilities, base/course matches
  • X, V, Q (optional): Assignment matrices for AFSCs, bases, and training courses
  • Lambda, Y (optional): Value function parameters per AFSC and objective
  • Castle Metrics (if applicable): Metrics for CASTLE-mode AFSCs
  • Blocking Pairs (if present): Cadet-AFSC blocking violations

Notes

  • Conditional formatting is applied to highlight preference rankings, merit scores, and match quality.
  • The function handles presence or absence of optional components (e.g., base matching, training courses).
  • Top 10 cadet choices and utilities are shown in the Solution tab for deeper preference analysis.

See Also

Source code in afccp/data/processing.py
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
def export_solution_results(instance, filepath):
    """
    Export a comprehensive Excel workbook of solution results.

    This function generates an Excel file containing detailed outputs from a solved cadet-AFSC assignment instance,
    including objective values, cadet assignments, constraint violations, and other performance metrics. The resulting
    Excel workbook supports deep post-solution analysis and includes conditional formatting for visual clarity.

    Parameters
    ----------
    - instance : Instance
      An object representing the solved assignment problem. Must contain:

      - `parameters` (dict): Problem data
      - `value_parameters` (dict): Objective metadata and weights
      - `solution` (dict): Final solution output (e.g., assignments, utilities, choice rankings)
      - `mdl_p` (dict): Metadata including formatting options
    - filepath : str
      Full path where the Excel file will be saved (e.g., `"output/solution_results.xlsx"`)

    Returns
    -------
    None
      Writes an `.xlsx` file to disk containing multiple sheets of structured solution data.

    Excel Output Includes
    ---------------------
    - Main: High-level metrics, objective value, choice counts, and performance indicators
    - Objective Measures: AFSC scores for each weighted objective
    - Constraint Fails: Constraint violations by AFSC
    - Objective Values: Weighted performance per AFSC with visual scoring heatmaps
    - Solution: Per-cadet assignment breakdown with preferences, utilities, base/course matches
    - X, V, Q (optional): Assignment matrices for AFSCs, bases, and training courses
    - Lambda, Y (optional): Value function parameters per AFSC and objective
    - Castle Metrics (if applicable): Metrics for CASTLE-mode AFSCs
    - Blocking Pairs (if present): Cadet-AFSC blocking violations

    Notes
    -----
    - Conditional formatting is applied to highlight preference rankings, merit scores, and match quality.
    - The function handles presence or absence of optional components (e.g., base matching, training courses).
    - Top 10 cadet choices and utilities are shown in the Solution tab for deeper preference analysis.

    See Also
    --------
    - [`draw_frame_border_outside`](../../../afccp/reference/data/processing/#data.processing.draw_frame_border_outside)
    """

    # Shorthand
    p, vp, solution = instance.parameters, instance.value_parameters, instance.solution
    mdl_p = instance.mdl_p

    # Get list of excel columns in order ("A", "AB", etc.)
    alphabet = list(string.ascii_uppercase)
    excel_columns = copy.deepcopy(alphabet)
    for letter in alphabet:
        for letter_2 in alphabet:
            excel_columns.append(letter + letter_2)

    # Create a Pandas Excel writer using XlsxWriter as the engine.
    writer = pd.ExcelWriter(filepath, engine='xlsxwriter')

    # Get the xlsxwriter objects from the dataframe writer object.
    workbook = writer.book
    worksheet = workbook.add_worksheet("Main")

    # Make the background white initially
    white_format = workbook.add_format({'bold': False, 'font_color': 'black', 'bg_color': 'white',
                                       'font_size': 14, 'font_name': 'Calibri'})
    for r in range(200):
        for c in range(50):
            worksheet.write(r, c, '', white_format)

    # Merge cells
    merge_format = workbook.add_format({'bold': True, 'font_color': 'black', 'bg_color': 'white',
                                       'font_size': 14, 'font_name': 'Calibri', 'align': 'center',
                                        'valign': 'vcenter', 'border_color': 'black', 'border': 1})
    worksheet.merge_range("B2:D2", "VFT Overall Metrics", merge_format)
    worksheet.merge_range("F2:G2", "Additional Metrics", merge_format)
    worksheet.write('I2', 'Preference', merge_format)
    worksheet.write('J2', 'Count', merge_format)
    worksheet.write('K2', 'Proportion', merge_format)

    # Objective Value
    obj_format = workbook.add_format({'bold': True, 'font_color': 'black', 'bg_color': 'yellow',
                                      'font_size': 14, 'font_name': 'Calibri', 'align': 'center',
                                      'valign': 'vcenter', 'border_color': 'black', 'border': 1})
    worksheet.merge_range("C6:D6", round(solution['z'], 4), obj_format)

    # Other cells
    cell_format = workbook.add_format({'bold': False, 'font_color': 'black', 'bg_color': 'white',
                                       'font_size': 14, 'font_name': 'Calibri', 'align': 'center',
                                        'valign': 'vcenter', 'border_color': 'black', 'border': 1})
    worksheet.write('B3', 'VFT', cell_format)
    worksheet.write('B4', 'Cadets', cell_format)
    worksheet.write('B5', 'AFSCs', cell_format)
    worksheet.write('B6', 'Z', cell_format)
    worksheet.write('C3', 'Value', cell_format)
    worksheet.write('D3', 'Weight', cell_format)

    # Basic format
    cell_format = workbook.add_format({'bold': False, 'font_color': 'black', 'bg_color': 'white',
                                        'font_size': 14, 'font_name': 'Calibri', 'border_color': 'black', 'border': 1})

    # Choice Counts
    choice_dict = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth", 6: "Sixth", 7: "Seventh",
                   8: "Eighth", 9: "Ninth", 10: "Tenth"}
    for choice in choice_dict:
        worksheet.write("J" + str(2 + choice), int(solution['cadet_choice_counts'][choice]), cell_format)
        worksheet.write("I" + str(2 + choice), choice_dict[choice], cell_format)
        worksheet.write("K" + str(2 + choice), round(solution['cadet_choice_counts'][choice] / p['N^Match'], 3),
                        cell_format)
    worksheet.write("I" + str(3 + choice), "All Others", cell_format)
    worksheet.write("J" + str(3 + choice), int(solution['cadet_choice_counts']['All Others']), cell_format)
    worksheet.write("K" + str(3 + choice), round(solution['cadet_choice_counts']["All Others"] / p['N^Match'], 3),
                    cell_format)

    # Additional solution metrics
    name_metric_dict = {'Blocking Pairs': 'num_blocking_pairs', 'Ineligible Cadets': 'num_ineligible',
                        'Unmatched Cadets': 'num_unmatched',
                        'Top 3 Choices (Proportion) for USSF': 'top_3_ussf_count',
                        'Top 3 Choices (Proportion) for USAF': 'top_3_usaf_count',
                        'Top 3 Choices (Proportion) for USAFA': 'top_3_usafa_count',
                        'Top 3 Choices (Proportion) for ROTC': 'top_3_rotc_count',
                        'Top 3 Choices (Proportion) for OTS': 'top_3_ots_count',
                        'Average Cadet Choice': 'average_cadet_choice',
                        'Average Normalized AFSC Score': 'weighted_average_afsc_score',
                        'Average NRL Normalized AFSC Score': 'weighted_average_nrl_afsc_score',
                        'Failed Constraints': 'total_failed_constraints', 'USSF OM': 'ussf_om',
                        'Global Utility': 'z^gu', 'Cadet Utility': 'cadet_utility_overall',
                        'z^CASTLE': 'z^CASTLE', 'z^CASTLE (Values)': 'z^CASTLE (Values)',
                        'AFSC Utility': 'afsc_utility_overall',
                        'USAFA Cadet Utility': 'usafa_cadet_utility',
                        'ROTC Cadet Utility': 'rotc_cadet_utility',
                        'OTS Cadet Utility': 'ots_cadet_utility',
                        'USSF Cadet Utility': 'ussf_cadet_utility',
                        'USAF Cadet Utility': 'usaf_cadet_utility',
                        'USSF AFSC Utility': 'ussf_afsc_utility',
                        'USAF AFSC Utility': 'usaf_afsc_utility',
                        'OTS Average Cadet Utility': 'OTS Average Cadet Utility',
                        'OTS Average AFSC Utility': 'OTS Average AFSC Utility',
                        'Average Normalized AFSC Score (USSF)': 'weighted_average_ussf_afsc_score',
                        'Average Normalized AFSC Score (USAF)': 'weighted_average_usaf_afsc_score',
                        'USAFA USSF Cadets / USAFA USSF PGL': 'ussf_usafa_pgl_target',
                        'ROTC USSF Cadets / ROTC USSF PGL': 'ussf_rotc_pgl_target',
                        'Cadets Successfully Constrained to Accessions Group / Total Fixed Accession Group Slots':
                            'constrained_acc_grp_target',
                        "Cadets Successfully Constrained to AFSC / Total Fixed AFSC Slots":
                            'cadets_fixed_correctly',
                        "Cadets Successfully Reserved to AFSC / Total Reserved AFSC Slots":
                            'cadets_reserved_correctly',
                        "Successful Alternate List Scenarios / Total Possible Alternate List Scenarios":
                            'alternate_list_metric',
                        'OTS "Must Match" Candidates / Total Matched OTS Candidates': 'matched_out_of_must_match',
                        'OTS Candidates receiving an AFSC they selected ': 'OTS Selected Pref Count'}
    for acc_grp in p['afscs_acc_grp']:
        name_metric_dict[acc_grp + " Racial Simpson Index"] = 'simpson_index_' + acc_grp

    # Add these metrics into excel
    for r, name in enumerate(list(name_metric_dict.keys())):
        if name_metric_dict[name] in solution:

            # Sometimes we can't write in a value for a solution metric that is incomplete
            try:
                worksheet.write('F' + str(3 + r), name, cell_format)
                worksheet.write('G' + str(3 + r), solution[name_metric_dict[name]], cell_format)
            except:
                pass

    # VFT Metrics
    worksheet.write('C4', round(solution['cadets_overall_value'], 4), cell_format)
    worksheet.write('C5', round(solution['afscs_overall_value'], 4), cell_format)
    worksheet.write('D4', round(vp['cadets_overall_weight'], 4), cell_format)
    worksheet.write('D5', round(vp['afscs_overall_weight'], 4), cell_format)

    # Draw bigger borders
    draw_frame_border_outside(workbook, worksheet, 1, 1, 5, 3, color='black', width=2)
    draw_frame_border_outside(workbook, worksheet, 1, 5, len(name_metric_dict.keys()) + 1, 2, color='black', width=2)
    draw_frame_border_outside(workbook, worksheet, 1, 8, 12, 3, color='black', width=2)

    # Adjust Column Widths
    column_widths = {0: 1.50, 4: 1.50, 5: 31, 7: 1.50, 8: 14, 10: 12}
    for c in column_widths:
        worksheet.set_column(c, c, column_widths[c])

    def export_results_dfs():
        """
        This nested function is here to export all other dataframes
        """

        # Get the xlsxwriter worksheet object.
        workbook = writer.book

        # AFSC Objective measures dataframe
        df = pd.DataFrame({'AFSC': p['afscs'][:p['M']]})
        for k, objective in enumerate(vp['objectives']):
            df[objective] = np.around(solution['objective_measure'][:, k], 2)

        # Convert the dataframe to an XlsxWriter Excel object.
        df.to_excel(writer, sheet_name='Objective Measures', index=False)

        # Add Castle Data if it exists
        if 'castle_q' in p:
            castle_afscs = [afsc for afsc, _ in p['J^CASTLE'].items()]
            castle_counts = [solution['castle_counts'][afsc] for afsc in castle_afscs]
            castle_values = [solution['castle_v'][afsc] for afsc in castle_afscs]
            df = pd.DataFrame({'AFSC': castle_afscs, 'Count': castle_counts, 'Value': castle_values})
            df.to_excel(writer, sheet_name='Castle Metrics', index=False)

        # AFSC Constraint Fail dataframe
        df = pd.DataFrame({'AFSC': p['afscs'][:p['M']]})
        for k, objective in enumerate(vp['objectives']):
            df[objective] = solution['objective_constraint_fail'][:, k]

        # Convert the dataframe to an XlsxWriter Excel object.
        df.to_excel(writer, sheet_name='Constraint Fails', index=False)

        # AFSC Objective values dataframe
        df = pd.DataFrame({'AFSC': p['afscs'][:p['M']]})
        for k, objective in enumerate(vp['objectives']):
            values = np.empty((p['M']))
            values[:] = np.nan
            np.put(values, vp['J^A'][k], np.around(solution['objective_value'][vp['J^A'][k], k], 2))

            df[objective] = values

        # Convert the dataframe to an XlsxWriter Excel object.
        df.to_excel(writer, sheet_name='Objective Values', index=False)

        # Get the xlsxwriter worksheet object.
        worksheet = writer.sheets["Objective Values"]

        # Add a percent number format
        percent_format = workbook.add_format({"num_format": "0.0%"})
        worksheet.set_column(1, vp['O'] + 1, None, percent_format)

        # Conditional formatting to highlight which objectives were met/not met
        worksheet.conditional_format("B2:" + excel_columns[vp['O']] + str(p['M'] + 1), {"type": "3_color_scale"})

        # Solution Dataframe
        df = pd.DataFrame({'Cadet': p['cadets']})
        df['USAFA'] = p['usafa']
        df['Merit'] = p['merit']
        df["Matched AFSC"] = solution['afsc_array']
        if "base_array" in solution:
            df["Matched Base"] = solution['base_array']
            df["Matched Course"] = solution['course_array']
            col_dict = {'Base Choice': 'base_choice', 'Cadet State': 'cadet_state_achieved',
                        'State Utility': 'state_utility_used', 'Cadet Value': 'cadet_value_achieved',
                        'AFSC Weight': 'afsc_weight_used', 'Base Weight': 'base_weight_used',
                        'Course Weight': 'course_weight_used', 'Base Utility': 'base_utility_achieved',
                        'Course Utility': 'course_utility_achieved'}
            for key, val in col_dict.items():
                if val in solution:
                    df[key] = solution[val]
        df['Cadet Choice'] = solution['cadet_choice']
        df['AFSC Choice'] = solution['afsc_choice']
        df['Cadet Utility'] = solution['cadet_utility_achieved']
        df['AFSC Utility'] = solution['afsc_utility_achieved']
        df['Global Utility'] = solution['global_utility_achieved']
        df['Matched Deg Tier'] = [  # "U" for unmatched cadets
            p['qual'][i, solution['j_array'][i]] if solution['j_array'][i] in p['J'] else 'U' for i in p['I']]

        # Rated Reserves/Matches/Alternates
        for s_name in ['Rated Matches', 'Rated Reserves', 'Rated Alternates (Hard)', 'Rated Alternates (Soft)']:
            if s_name in instance.solutions:
                df[s_name] = instance.solutions[s_name]['afsc_array']
            else:
                df[s_name] = ["*" for _ in p['I']]

        # Rated Rankings
        for j in p['J^Rated']:
            df[p['afscs'][j] + " Rank"] = p['a_pref_matrix'][:, j]

        # Add the cadet's top 10 choices for more information!
        for choice in range(min(p['P'], 10)):
            df['Choice ' + str(choice + 1)] = p['c_preferences'][:, choice]

        # Capture preference columns
        preference_columns = excel_columns[len(df.columns) - min(p['P'], 10): len(df.columns)]

        # Add the cadet's top 10 utilities for more information!
        for choice in range(min(p['P'], 10)):
            df['Utility ' + str(choice + 1)] = np.zeros(p['N'])
            for i in p['I']:

                # Might run out of utilities
                if len(p['cadet_preferences'][i]) > choice:
                    j = p['cadet_preferences'][i][choice]
                    df['Utility ' + str(choice + 1)][i] = p['cadet_utility'][i, j]

        # Convert the dataframe to an XlsxWriter Excel object.
        df.to_excel(writer, sheet_name='Solution', index=False, startrow=1, header=False)

        # Get the xlsxwriter worksheet object.
        worksheet = writer.sheets["Solution"]

        # Add additional formatting to top row
        header_format = workbook.add_format({'bold': True, 'text_wrap': True, 'align': 'center', 'valign': 'vcenter'})
        for col_num, value in enumerate(df.columns.values):
            worksheet.write(0, col_num, value, header_format)

        # Get numpy array of df columns
        df_columns = np.array(df.columns)

        # Conditional Formatting on preferences
        cadet_choice_col = excel_columns[np.where(df_columns == 'Cadet Choice')[0][0]]
        for col, c in enumerate(preference_columns):
            format1 = workbook.add_format({'bg_color': mdl_p['choice_colors'][col + 1]})
            worksheet.conditional_format(c + "2:" + c + str(p['N'] + 1),
                                         {'type': 'cell', 'value': 'D2',
                                          'criteria': '=',
                                          'format': format1
                                          })
            # Cadet Choice Column
            worksheet.conditional_format(cadet_choice_col + "2:" + cadet_choice_col + str(p['N'] + 1),
                                         {'type': 'cell', 'value': col + 1,
                                          'criteria': '=',
                                          'format': format1
                                          })

        # Freeze top row
        worksheet.freeze_panes(1, 0)

        # Add filter to headers
        worksheet.autofilter('A1:' + str(excel_columns[len(df.columns) - 1]) + str(p['N'] + 1))

        # Replace unassigned base values
        if 'Base Choice' in df:
            cell_format = workbook.add_format({})
            for i in p['I']:
                if df.loc[i, 'Base Choice'] == 0:
                    letters = [excel_columns[np.where(df_columns == col)[0][0]] for col in
                               ['Base Weight', 'Base Choice', 'Base Utility']]
                    for letter in letters:
                        worksheet.write(letter + str(i + 2), '', cell_format)

        # Small values good (1, 2, 3, 4, ...) Conditional Formatting
        sv_excel_cols = []
        for col in ['AFSC Choice', 'Base Choice', 'Cadet State']:
            if col in df:
                sv_excel_cols.append(excel_columns[np.where(df_columns == col)[0][0]])
        for c in sv_excel_cols:
            worksheet.conditional_format(
                c + "2:" + c + str(p['N'] + 1), {'type': '3_color_scale', 'min_color': '#63be7b',
                                                 'mid_color': '#ffeb84', 'max_color': '#f8696b'})

        # Large values good (1, ...,  0) Conditional Formatting
        lv_excel_cols = []
        for col in ['Merit', 'Cadet Utility', 'AFSC Utility', 'Global Utility', 'Base Utility', 'Course Utility',
                    'State Utility', 'Cadet Value', 'Cadet Value (Pyomo)']:
            if col in df:
                lv_excel_cols.append(excel_columns[np.where(df_columns == col)[0][0]])
        for c in lv_excel_cols:
            worksheet.conditional_format(c + "2:" + c + str(p['N'] + 1), {"type": "3_color_scale"})

        # "All Others" for the choice column
        format1 = workbook.add_format({'bg_color': mdl_p['all_other_choice_colors']})
        worksheet.conditional_format(cadet_choice_col + "2:" + cadet_choice_col + str(p['N'] + 1),
                                     {'type': 'cell', 'value': 10, 'criteria': '>', 'format': format1})

        # Add a percent number format to certain columns
        percent_cols = ['Merit', 'State Utility', 'Cadet Value', 'AFSC Weight', 'Base Weight', 'Course Weight',
                        'Base Utility', 'Course Utility', 'Cadet Utility', 'AFSC Utility', 'Global Utility']
        percent_format = workbook.add_format({"num_format": "0.0%"})
        for col in percent_cols:
            if col in df_columns:
                c_num = np.where(df_columns == col)[0][0]
                worksheet.set_column(c_num, c_num, None, percent_format)

        # Solution/X Matrix
        if 'x' in solution:
            df = pd.DataFrame({'Cadet': p['cadets']})
            df[instance.solution_name] = instance.solution['afsc_array']
            for j, afsc in enumerate(p['afscs'][:p['M']]):
                df[afsc] = instance.solution['x'][:, j]

            # Convert the dataframe to an XlsxWriter Excel object.
            df.to_excel(writer, sheet_name='X', index=False)

        # Base Matrix
        if 'v' in solution:
            df = pd.DataFrame({'Cadet': p['cadets']})
            df[instance.solution_name] = instance.solution['base_array']
            for b, base in enumerate(p['bases'][:p['S']]):
                df[base] = instance.solution['v'][:, b]

            # Convert the dataframe to an XlsxWriter Excel object.
            df.to_excel(writer, sheet_name='V', index=False)

        # Training Matrix
        if 'q' in solution:

            df = pd.DataFrame({'Cadet': p['cadets']})
            df[instance.solution_name] = instance.solution['course_array']
            for j, afsc in enumerate(p['afscs'][:p['M']]):
                for c, course in enumerate(p['courses'][j]):
                    df[afsc + "-" + course] = instance.solution['q'][:, j, c]

            # Convert the dataframe to an XlsxWriter Excel object.
            df.to_excel(writer, sheet_name='Q', index=False)

        # Value Function Matrices
        if 'lambda' in solution:

            afsc_arr = [afsc for afsc in p['afscs'][:p['M']] for _ in vp['K']]
            objective_arr = [objective for _ in p['J'] for objective in vp['objectives']]

            df = pd.DataFrame({'AFSC': afsc_arr, 'Objective': objective_arr})
            for l in range(solution['r^max']):
                arr = [solution['lambda'][j, k, l] for j in p['J'] for k in vp['K']]
                df['l_' + str(l + 1)] =  arr

            # Convert the dataframe to an XlsxWriter Excel object.
            df.to_excel(writer, sheet_name='Lambda', index=False)

            df = pd.DataFrame({'AFSC': afsc_arr, 'Objective': objective_arr})
            for l in range(solution['r^max']):
                arr = [solution['y'][j, k, l] for j in p['J'] for k in vp['K']]
                df['y_' + str(l + 1)] = arr

            # Convert the dataframe to an XlsxWriter Excel object.
            df.to_excel(writer, sheet_name='Y', index=False)

        # Blocking Pairs
        if 'blocking_pairs' in solution:

            # Create "blocking pairs" dataframe and export it to excel
            blocking_cadets = [tuple[0] for tuple in solution['blocking_pairs']]
            blocking_afscs = [p['afscs'][tuple[1]] for tuple in solution['blocking_pairs']]
            df = pd.DataFrame({'Blocking Cadet': blocking_cadets, 'Blocking AFSC': blocking_afscs})
            df.to_excel(writer, sheet_name='Blocking Pairs', index=False)

        # Close the workbook
        writer.close()
    export_results_dfs()

draw_frame_border_outside(workbook, worksheet, first_row, first_col, rows_count, cols_count, color='#0000FF', width=2)

Draws an outer border around a rectangular cell range using conditional formatting.

  • Applies a frame to the specified region starting at (first_row, first_col) with size (rows_count x cols_count)
  • Border color and width are customizable
  • Assumes 0-based indexing and adjusts if row/column values are less than 1

Parameters

  • workbook : xlsxwriter.Workbook
  • worksheet : xlsxwriter.Worksheet
  • first_row : int
  • first_col : int
  • rows_count : int
  • cols_count : int
  • color : str, default '#0000FF'
  • width : int, default 2
Source code in afccp/data/processing.py
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
def draw_frame_border_outside(workbook, worksheet, first_row, first_col, rows_count, cols_count,
                              color='#0000FF', width=2):
    """
    Draws an outer border around a rectangular cell range using conditional formatting.

    - Applies a frame to the specified region starting at (first_row, first_col) with size (rows_count x cols_count)
    - Border color and width are customizable
    - Assumes 0-based indexing and adjusts if row/column values are less than 1

    Parameters
    ----------
    - workbook : xlsxwriter.Workbook
    - worksheet : xlsxwriter.Worksheet
    - first_row : int
    - first_col : int
    - rows_count : int
    - cols_count : int
    - color : str, default '#0000FF'
    - width : int, default 2
    """

    # verify type of data passed in
    if first_row <= 0:
        first_row = 1
    if first_col <= 0:
        first_col = 1
    cols_count = abs(cols_count)
    rows_count = abs(rows_count)

    # top left corner
    worksheet.conditional_format(first_row - 1, first_col,
                                 first_row - 1, first_col,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'bottom': width, 'border_color': color})})
    worksheet.conditional_format(first_row, first_col - 1,
                                 first_row, first_col - 1,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'right': width, 'border_color': color})})
    # top right corner
    worksheet.conditional_format(first_row - 1, first_col + cols_count - 1,
                                 first_row - 1, first_col + cols_count - 1,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'bottom': width, 'border_color': color})})
    worksheet.conditional_format(first_row, first_col + cols_count,
                                 first_row, first_col + cols_count,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'left': width, 'border_color': color})})
    # bottom left corner
    worksheet.conditional_format(first_row + rows_count - 1, first_col - 1,
                                 first_row + rows_count - 1, first_col - 1,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'right': width, 'border_color': color})})
    worksheet.conditional_format(first_row + rows_count, first_col,
                                 first_row + rows_count, first_col,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'top': width, 'border_color': color})})
    # bottom right corner
    worksheet.conditional_format(first_row + rows_count - 1, first_col + cols_count,
                                 first_row + rows_count - 1, first_col + cols_count,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'left': width, 'border_color': color})})
    worksheet.conditional_format(first_row + rows_count, first_col + cols_count - 1,
                                 first_row + rows_count, first_col + cols_count - 1,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'top': width, 'border_color': color})})
    # top
    worksheet.conditional_format(first_row - 1, first_col + 1,
                                 first_row - 1, first_col + cols_count - 2,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'bottom': width, 'border_color': color})})
    # left
    worksheet.conditional_format(first_row + 1, first_col - 1,
                                 first_row + rows_count - 2, first_col - 1,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'right': width, 'border_color': color})})
    # bottom
    worksheet.conditional_format(first_row + rows_count, first_col + 1,
                                 first_row + rows_count, first_col + cols_count - 2,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'top': width, 'border_color': color})})
    # right
    worksheet.conditional_format(first_row + 1, first_col + cols_count,
                                 first_row + rows_count - 2, first_col + cols_count,
                                 {'type': 'formula', 'criteria': 'True',
                                  'format': workbook.add_format({'left': width, 'border_color': color})})