data.processing
¶
Data Processing Module¶
This module handles all input/output operations for the AFCCP modeling pipeline.
It supports importing problem instance data (AFSCs, cadets, preferences, value functions, etc.) and exporting solutions and diagnostics to CSV and Excel formats for analysis. It also initializes the directory structure for versioned data instances.
Key Capabilities¶
- Organizes input/output folders and paths for a data instance
- Imports cleaned data required for AFCCP optimization
- Exports results and supporting data for evaluation and visualization
Primary Functions¶
-
Initialization
initialize_file_information
: Sets up import/export folder paths for a given data name and version
-
Import Functions
import_afscs_data
: Loads AFSCs and related structural dataimport_cadets_data
: Loads cadet records and attributesimport_afsc_cadet_matrices_data
: Loads cadet preference matrices and qualification matricesimport_value_parameters_data
: Loads objective weights and breakpoints for value functionsimport_solutions_data
: Imports previously solved cadet-to-AFSC assignmentsimport_additional_data
: Loads auxiliary data like base assignments and course info
-
Export Functions
export_afscs_data
: Saves AFSC-related data to CSVexport_cadets_data
: Saves cadet-related data to CSVexport_afsc_cadet_matrices_data
: Saves preference and qualification matrices to CSVexport_value_parameters_data
: Saves value function breakpoints and weights to CSVexport_solutions_data
: Saves one or more solutions in compact CSV formatexport_additional_data
: Saves supporting data (base preferences, utility matrices, courses)export_solution_results_excel
: Writes detailed solution metrics and diagnostics to an Excel workbook
Notes¶
All functions assume access to an Instance
object that contains parameters, value structures,
solution data, and export path information. The module is used during both the data preparation
and results analysis stages of the AFCCP workflow.
initialize_file_information(data_name: str, data_version: str)
¶
Initialize filepaths for an AFCCP data instance.
This function constructs and returns import/export file path dictionaries for a given AFCCP
data instance identified by data_name
and data_version
. It ensures the required directory
structure exists under instances/
and dynamically builds file paths for reading and writing
instance-specific data and results.
It is primarily used to manage file I/O consistently across different data experiments or scenario versions within the AFCCP modeling system.
Parameters¶
-
data_name : str The name of the data instance (e.g.,
"2025"
,"Baseline"
,"TestRun01"
). This defines the subdirectory underinstances/
where the data is stored. -
data_version : str The version label for the run (e.g.,
"Default"
,"V1"
). Used to separate multiple experimental runs under the same data instance name, enabling controlled versioning of model input and output files.
Returns¶
- Tuple[Dict[str, str], Dict[str, str]]
A tuple of two dictionaries:
import_paths
: maps each input data type (e.g.,"Cadets"
,"AFSCs"
) to its CSV file path.export_paths
: maps each output destination (e.g.,"Solutions"
,"Results Charts"
) to its folder or file path.
Directory Behavior¶
- Creates base folder
instances/<data_name>/
if it doesn't exist. - Creates version-specific folders for
"Model Input"
and"Analysis & Results"
:- e.g.,
"4. Model Input (V1)"
,"5. Analysis & Results (V1)"
- e.g.,
- Also creates subfolders under
"Analysis & Results"
such as:"Data Charts"
,"Results Charts"
,"Cadet Board"
,"Value Functions"
- If version-specific input files are not found, it defaults to shared or base files when appropriate.
Examples¶
from afccp.data.processing import initialize_file_information
import_paths, export_paths = initialize_file_information("2025", "V1")
afsc_path = import_paths["AFSCs"]
solution_folder = export_paths["Analysis & Results"]
Source code in afccp/data/processing.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
import_afscs_data(import_filepaths: dict, parameters: dict) -> dict
¶
Imports AFSC-level model input data from CSV and populates the instance parameter dictionary.
This function reads the "AFSCs"
input file (provided via import_filepaths
) and updates the supplied
parameters
dictionary with structured information for each Air Force Specialty Code (AFSC). These inputs
are essential for AFCCP modeling and include AFSC quotas, groupings, tiered degree requirements, and other
structural attributes.
The function handles type conversion, fills missing entries, and appends a special unmatched AFSC ("*") for use in optimization logic.
Parameters¶
-
import_filepaths : dict A dictionary of import paths keyed by label (e.g.,
"AFSCs"
). Must contain the key"AFSCs"
pointing to the location of the AFSCs input CSV file. -
parameters : dict A dictionary of instance-wide input parameters. This will be updated in-place with the AFSC-specific parameter values.
Returns¶
-
dict The updated
parameters
dictionary, now containing keys such as: -
"afscs"
: List of AFSC names (plus an unmatched AFSC "*") "acc_grp"
: Accession group categories"afscs_stem"
: STEM-designation indicator for each AFSC"quota_d"
,"quota_e"
,"quota_min"
,"quota_max"
: Target and constraint bounds"pgl"
: Projected graduation levels for each AFSC"Deg Tiers"
: Tiered degree qualification matrix (if present)
Notes¶
- All values are loaded as NumPy arrays to facilitate vectorized modeling.
- The unmatched AFSC
"*"
is appended to"afscs"
for modeling unmatched cadets. - NaN entries and string "nan" values in the CSV are sanitized to empty strings before processing.
- Degree tiers are only added if the
"Deg Tier 1"
column is present in the CSV. ```
See Also¶
Source code in afccp/data/processing.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
import_cadets_data(import_filepaths, parameters)
¶
Imports Cadet-level model input data from CSV and populates the instance parameter dictionary.
This function reads the "Cadets"
CSV file specified in import_filepaths
and extracts relevant demographic,
qualification, preference, training, and weighting information for each cadet. It populates the provided
parameters
dictionary with this structured data, including derived quantities like total cadet count,
preference matrix dimensions, and accession source types (SOCs).
Parameters¶
-
import_filepaths : dict Dictionary of import paths keyed by label. Must contain the key
"Cadets"
pointing to the cadet input CSV path. -
parameters : dict Dictionary of instance-level parameters. This dictionary will be updated in-place with cadet-related entries.
Returns¶
dict
The updated parameters
dictionary, now containing cadet-specific fields such as:
"cadets"
,"merit"
,"assigned"
,"asc1"
/"asc2"
,"cip1"
/"cip2"
(basic identifiers)"usafa"
,"soc"
,"minority"
,"race"
,"ethnicity"
(demographic data)"must_match"
(AFSCs that must be assigned)"c_preferences"
: Preference matrix (N x P) where N = cadets, P = preference slots"c_utilities"
: Utility matrix (N x U), where U = min(P, 10)"SOCs"
: List of accession sources present in this instance (e.g.,["usafa", "rotc"]
)"training_start"
,"training_preferences"
,"training_threshold"
(training pipeline values)"weight_afsc"
,"weight_base"
,"weight_course"
(objective weights)
Notes¶
- NaN or string 'nan' entries in the CSV are automatically sanitized.
- Extra care is taken to remove BOM characters (e.g.,
""
) in CSV headers. - Preferences are detected using any column starting with
"Pref_"
, and corresponding utilities from"Util_1"
onward. - SOCs must be one of
"USAFA"
,"ROTC"
, or"OTS"
; any other value will raise an error. - This function calls
gather_degree_tier_qual_matrix()
to supplement qualification mappings.
See Also¶
Source code in afccp/data/processing.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
import_afsc_cadet_matrices_data(import_filepaths, parameters)
¶
Imports optional AFSC-cadet interaction matrices and updates the instance parameter dictionary accordingly.
This function augments the core cadet and AFSC input data by importing preference matrices, utility matrices, and supplemental rated-selection files (if available). The imported data enables more advanced modeling of cadet-AFSC interactions including two-sided preferences and selection boards.
Parameters¶
-
import_filepaths : dict Dictionary of filepaths keyed by dataset name. Recognized keys include:
"Cadets Utility"
"Cadets Preferences"
"AFSCs Utility"
"AFSCs Preferences"
"Cadets Utility (Final)"
"Cadets Selected"
"AFSCs Buckets"
"ROTC Rated Interest"
,"ROTC Rated OM"
,"USAFA Rated OM"
,"OTS Rated OM"
-
parameters : dict Dictionary of model instance parameters. Must contain:
"afscs"
: array of AFSC names"N"
: number of cadets"M"
: number of AFSCs"num_util"
: number of utility entries per cadet"P"
: number of preferences
Returns¶
dict Updated parameter dictionary with new keys (if data was provided), including:
"utility"
: cadet utility matrix (N x M)"c_pref_matrix"
: cadet preference rankings (N x M, integer-valued, 1 = top choice)"afsc_utility"
: AFSC utility matrix (M x M)"a_pref_matrix"
: AFSC preference rankings (M x M)"cadet_utility"
: final cadet utility matrix (N x M)"c_selected_matrix"
: matrix of cadets selected by AFSCs (N x M)"a_bucket_matrix"
: bucketing of AFSCs for visualization or selection (M x M)"rr_interest_matrix"
,"rr_om_matrix"
,"rr_om_cadets"
: ROTC board data"ur_om_matrix"
,"ur_om_cadets"
: USAFA board data"or_om_matrix"
,"or_om_cadets"
: OTS board data"usafa_cadets"
: indices of USAFA cadets in the instance
Raises¶
ValueError
If neither "Cadets Utility"
nor "c_utilities"
are provided in the inputs, since cadet utility data is required.
Notes¶
- This function assumes the
"Cadets"
and"AFSCs"
CSVs have already been processed. - If raw preferences/utilities are not explicitly imported, they are reconstructed from
c_preferences
andc_utilities
. - Preference ranks use integers where
1
is most preferred (not0
). - Utility matrices are aligned by the order of
p["afscs"]
and not by the file column order alone. - AFSC utility and preference data are optional but support two-sided matching or board processes.
- Rated OM/Interest files enable specialty-specific board logic for each SOC.
Source code in afccp/data/processing.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
import_value_parameters_data(import_filepaths, parameters, num_breakpoints=24)
¶
Imports and constructs value parameter sets for the model based on CSV definitions and analyst-defined breakpoints.
This function reads and compiles all information associated with value-based decision modeling, including objective functions, breakpoints, weights, and value constraints for both cadets and AFSCs. It supports multiple sets of value parameters, each potentially with different assumptions or constraints.
Parameters¶
-
import_filepaths : dict Dictionary containing paths to relevant files. Required keys:
"Model Input"
: folder path containing individual VP set CSVs."Value Parameters"
: CSV listing metadata about each VP set. Optional keys:"Cadets Utility Constraints"
: file containing minimum cadet utility constraints by VP set.
-
parameters : dict Instance parameter dictionary already populated with
"M"
,"N"
, and AFSC/cadet-level arrays. -
num_breakpoints : int, optional (default=24) Number of breakpoints to discretize each value function unless exact breakpoints are provided.
Returns¶
dict A dictionary keyed by VP set names. Each value is a dictionary of value parameters containing:
- Objective definitions and weights
- Breakpoints (
a
) and values (f^hat
) - Minimum utility constraints
- AFSC objective indexed sets (
K^A
) cadet_weight
,afsc_weight
, and associated metadata- VP set weights and local weights for combination logic
Raises¶
-
FileNotFoundError If required files are missing from the provided import paths.
-
ValueError If the
"Value Parameters"
file is missing or empty.
Notes¶
- All AFSC objectives are indexed across
O
objectives per AFSC. - The function automatically parses objective weight strings and reconstructs value functions if needed.
- For each VP set listed in the
"Value Parameters"
file, the function expects a matching CSV file named"VP <VP Name>.csv"
(e.g.,"VP Baseline.csv"
). - Supports optional use of
"Cadets Utility Constraints"
to impose per-cadet minimums. - If
num_breakpoints
isNone
, raw a/f^hat arrays are expected instead of constructing from strings. - Value functions are compressed after loading to remove redundant zero segments for performance.
See Also¶
value_function_builder
create_segment_dict_from_string
condense_value_functions
value_parameters_sets_additions
Source code in afccp/data/processing.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
|
import_solutions_data(import_filepaths, parameters)
¶
Imports and assembles cadet assignment solutions from a saved output file (<data_name> Solutions.csv
). Optionally,
more files are read in for Base/Training Course solutions.
This function reads solution files containing AFSC, base, and course assignments for each cadet, converts string labels to indexed arrays, and returns a structured dictionary containing all available solution configurations.
Parameters¶
-
import_filepaths : dict Dictionary containing filepaths to solution files. Expected keys:
"Solutions"
: required CSV file with AFSC assignments (one column per solution)."Base Solutions"
: optional CSV with base assignments (same column names as above)."Course Solutions"
: optional CSV with course assignments (same column names as above).
-
parameters : dict Dictionary of instance parameters. Must contain:
'afscs'
: array of valid AFSC names.'bases'
: array of valid base names (if"Base Solutions"
is provided).'courses'
: list of valid course arrays for each AFSC (if"Course Solutions"
is provided).'S'
: sentinel index value for unmatched bases.
Returns¶
dict Dictionary mapping solution names to their data. Each solution entry contains:
'name'
: name of the solution (from CSV column header)'afsc_array'
: array of assigned AFSC strings'j_array'
: array of assigned AFSC indices (matchingparameters['afscs']
)'base_array'
(optional): array of base names (if base data is present)'b_array'
(optional): array of base indices (or sentinelS
if unmatched)'course_array'
(optional): array of course names (if course data is present)'c_array'
(optional): array of(j, c)
tuples representing AFSC/course index pairs
Raises¶
- FileNotFoundError
If the required
"Solutions"
file is not present inimport_filepaths
.
Notes¶
- If a course assignment is not found within any AFSC’s course list, a fallback value of
(0, 0)
is added and a warning is printed. - Assumes that all solution files share the same cadet ordering and column headers for consistent mapping.
See Also¶
Source code in afccp/data/processing.py
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
|
import_additional_data(import_filepaths, parameters)
¶
Imports supplemental data files (if present) and updates the instance parameters dictionary.
This function loads optional model extensions including base and course assignments, preference matrices, and CASTLE-specific AFSC data. These components are not required for basic operation but enhance downstream modeling functionality (e.g., course scheduling, base optimization, CASTLE implementation).
Parameters¶
-
import_filepaths : dict Dictionary containing filepaths to additional optional data files. Expected keys include:
- "Bases", "Bases Preferences", "Bases Utility"
- "Courses", "Castle Input"
-
parameters : dict Dictionary of core model parameters. This dictionary will be updated with any new fields derived from imported files.
Returns¶
dict Updated parameter dictionary with the following optional fields added if available:
'bases'
: Array of base names'S'
: Number of bases'base_min'
/'base_max'
: Base assignment bounds by AFSC'b_pref_matrix'
: Cadet base preference matrix'base_utility'
: Cadet base utility matrix'courses'
: Dict of course options by AFSC'course_start'
,'course_min'
,'course_max'
: Dicts with course metadata by AFSC'castle_afscs_arr'
,'afpc_afscs_arr'
: Raw CASTLE vs AFPC AFSC labels'castle_afscs'
: Mapping of CASTLE AFSCs → AFPC AFSCs'J^CASTLE'
: CASTLE AFSCs mapped to indices in the AFPC AFSC array'ots_counts'
: OTS accession counts for CASTLE AFSCs'optimal_policy'
: Policy toggle per CASTLE AFSC-
'castle_q'
: Dictionary of breakpoint-based value functions:'a'
,'f^hat'
: Breakpoints and values'r'
: Number of breakpoints'L'
: Breakpoint indices
Notes¶
- Breakpoint information from
"Castle Input"
is stored undercastle_q
. - Course and base matrices are assumed to be properly aligned with the cadet and AFSC indices already in memory.
- All newly imported data is optional and loaded only if the corresponding files are provided.
See Also¶
Source code in afccp/data/processing.py
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
|
export_afscs_data(instance)
¶
Exports AFSC-level data from the given Instance
object to a CSV file.
This function collects Air Force Specialty Code (AFSC) parameters stored in the instance,
organizes them into a structured dataframe, and writes the result to disk at the location
specified by instance.export_paths["AFSCs"]
.
Parameters¶
- instance : Instance
A fully initialized
Instance
object with a populatedparameters
dictionary andexport_paths
mapping. The instance must include AFSC data such as quotas, eligibility, preference counts, and any derived degree tier breakdowns.
Returns¶
- None The function writes the output to disk and does not return a value.
Notes¶
-
The function dynamically detects and exports the following fields if present:
- Core AFSC descriptors: name, accession group, STEM tag, base assignment
- Quota targets: Desired, Estimated, Min, Max, PGL, commissioning source quotas
- Course counts (
T
) and bubble caps (max_bubbles
) - Eligibility counts per commissioning source
- Degree tier distributions and tier counts (if
"Deg Tiers"
and"I^D"
are available) - Cadet preference counts per AFSC (if
"Choice Count"
is present)
-
Only the first
p["M"]
AFSCs are included in the output. Any padding elements (e.g., "*") are excluded. -
The output file is named
"AFSCs.csv"
and stored in the directory determined byinstance.export_paths
.
See Also¶
Source code in afccp/data/processing.py
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 |
|
export_cadets_data(instance)
¶
Exports cadet-level data from the given Instance
object to a CSV file.
This function builds the "Cadets" dataframe from internal model parameters stored in the instance,
capturing individual cadet characteristics, preferences, and qualification data (if available).
The output is saved to disk at the location specified by instance.export_paths["Cadets"]
.
Parameters¶
- instance : Instance
A fully initialized
Instance
object containing model parameters (parameters
) and a configured export path for the "Cadets" CSV file.
Returns¶
- None The function writes the cadet-level data to disk and does not return a value.
Notes¶
-
The following cadet-level attributes will be included if present in
parameters
:- Basic profile: Cadet ID, gender, race, ethnicity, accession group, STEM tag, ASC codes
- Assignment metadata: must-match flags, base/course preferences, assigned AFSC
- Merit metrics: raw merit, real merit
- Training data: start date, preference rankings, course/base weights and thresholds
- Utility and preference columns: if present, the full
c_utilities
andc_preferences
matrices will be exported - Qualification data: if a
qual
matrix is present, columns are added for each AFSC (e.g.,qual_17X
,qual_21R
)
-
The preference and utility columns are labeled as
Pref_1
,Pref_2
, ...,Util_1
,Util_2
, etc. - The output is saved as
"Cadets.csv"
under the directory given byinstance.export_paths
.
See Also¶
Source code in afccp/data/processing.py
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
|
export_afsc_cadet_matrices_data(instance)
¶
Exports cadet-AFSC utility and preference matrices from the given Instance
object to CSV files.
This function checks for the presence of known matrix-style parameters in the model (e.g., utility values, preference rankings, interest scores) and exports them to disk. Each matrix is stored as a CSV with cadets as rows and AFSCs as columns (or vice versa), depending on the context.
Parameters¶
- instance : Instance
A fully initialized
Instance
object containing model parameters (parameters
), value parameters (value_parameters
), and export paths.
Returns¶
- None The function writes one or more matrix-style datasets to disk if they exist.
Notes¶
-
The following parameters will be exported if present:
utility
: Cadet utilities over all AFSCs →"Cadets Utility"
c_pref_matrix
: Cadet preferences over all AFSCs →"Cadets Preferences"
afsc_utility
: AFSC utilities over all cadets →"AFSCs Utility"
a_pref_matrix
: AFSC preferences over all cadets →"AFSCs Preferences"
rr_interest_matrix
: ROTC-rated interest scores →"ROTC Rated Interest"
rr_om_matrix
: ROTC OM values →"ROTC Rated OM"
ur_om_matrix
: USAFA OM values →"USAFA Rated OM"
or_om_matrix
: OTS OM values →"OTS Rated OM"
cadet_utility
: Finalized cadet utility values →"Cadets Utility (Final)"
c_selected_matrix
: Final cadet selection matrix →"Cadets Selected"
a_bucket_matrix
: AFSC bucket matrix →"AFSCs Buckets"
-
Each exported dataframe will have a
"Cadet"
column followed by one column per AFSC in the relevant set. The set of AFSCs may vary depending on whether the data is specific to a commissioning source (SOC). -
Datasets related to specific SOCs (e.g.,
"ROTC Rated OM"
) use filtered cadet subsets and AFSCs determined bydetermine_soc_rated_afscs()
.
See Also¶
Source code in afccp/data/processing.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 |
|
export_value_parameters_data(instance)
¶
Export value parameter datasets and related information to CSV files for analysis.
This function extracts and exports optimization value parameter sets, global utility matrices (if available), and cadet-specific constraints. It supports multiple value parameter configurations by exporting separate files per set. This facilitates analysis, debugging, or visualization of value-based multi-objective optimization.
Parameters¶
-
instance : Instance A configured instance of the CadetCareerProblem class, including:
vp_dict
: Dictionary of value parameter setsvalue_parameters
: Active value parameter configurationparameters
: General instance parameters (e.g., AFSCs, cadets)export_paths
: File paths for saving exports
Returns¶
None The function writes multiple CSV files to disk for each available dataset.
This command will generate:
- A separate CSV file for each set of value parameters (e.g., weights, targets, value functions)
- An overall summary CSV file of value parameter metadata
- A cadet-level constraints CSV file (min values per cadet per VP set)
- A global utility matrix CSV (if global_utility
is present in a VP set)
Notes¶
- Value function breakpoints
a
and valuesf^hat
are stored as comma-separated strings for readability. - Objective weights are scaled to a 0–100 range and normalized per AFSC.
-
The output files use naming conventions like:
{data_name} {vp_name}.csv
{data_name} {vp_name} Global Utility.csv
- These files are versioned if the instance's data version is not
"Default"
.
See Also¶
Source code in afccp/data/processing.py
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 |
|
export_solutions_data(instance)
¶
Export cadet-to-AFSC solution assignments to CSV files.
This function exports all available cadet solution assignments (including AFSC, base, and course solutions) to CSV files for downstream analysis, visualization, or comparison. Each solution is saved as a column in the exported file, enabling side-by-side comparison of multiple optimization outcomes.
Parameters¶
-
instance : Instance The problem instance containing:
parameters
– model parameter dictionarysolutions
– dictionary of cadet-to-AFSC assignments by solution nameexport_paths
– dictionary of destination paths for saving outputs
Returns¶
None The function writes 1 to 3 CSV files to disk, depending on available solution components.
This exports:
- Solutions.csv
: Main cadet-to-AFSC assignment matrix
- Base Solutions.csv
: Optional cadet-to-base assignments, if present
- Course Solutions.csv
: Optional cadet-to-course assignments, if present
Notes¶
- Each file contains cadets in the first column and one or more solution columns following.
- Solution names (keys from
instance.solutions
) define the column headers. - The function safely skips missing data (e.g., base or course assignments are only exported if they exist).
- Used primarily to track scenario-based solution outputs from multi-run experiments.
See Also¶
Source code in afccp/data/processing.py
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 |
|
export_additional_data(instance)
¶
Export additional configuration and metadata to CSV files.
This function exports all supplementary datasets associated with the problem instance, including base
assignments, base preferences, utility scores, training course data, and CASTLE-AFSC mappings. These
datasets are derived from the instance.parameters
dictionary and written to disk using paths from
instance.export_paths
.
Parameters¶
-
instance : Instance The problem instance containing:
parameters
– dictionary of model inputs and outputsexport_paths
– dictionary of file paths for each dataset
Returns¶
None Outputs are written to CSV files; no value is returned.
This generates the following (if applicable):
- Bases.csv
: Min/max cadet assignments per AFSC at each base
- Bases Preferences.csv
: Cadet preferences over bases
- Bases Utility.csv
: Cadet utility scores for each base
- Courses.csv
: Course-level details per AFSC (min/max/start)
- Castle Input.csv
: CASTLE-to-AFPC AFSC mappings with optional value curves
Notes¶
- The export is conditional: datasets are only written if their associated parameters exist in
instance.parameters
. - CASTLE-related data (
castle_q
,castle_afscs_arr
, etc.) must be present to triggerCastle Input.csv
export. - Base utility and preference matrices are assumed to be cadet-by-base numpy arrays.
See Also¶
Source code in afccp/data/processing.py
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 |
|
export_solution_results(instance, filepath)
¶
Export a comprehensive Excel workbook of solution results.
This function generates an Excel file containing detailed outputs from a solved cadet-AFSC assignment instance, including objective values, cadet assignments, constraint violations, and other performance metrics. The resulting Excel workbook supports deep post-solution analysis and includes conditional formatting for visual clarity.
Parameters¶
-
instance : Instance An object representing the solved assignment problem. Must contain:
-
parameters
(dict): Problem data value_parameters
(dict): Objective metadata and weightssolution
(dict): Final solution output (e.g., assignments, utilities, choice rankings)mdl_p
(dict): Metadata including formatting options- filepath : str
Full path where the Excel file will be saved (e.g.,
"output/solution_results.xlsx"
)
Returns¶
None
Writes an .xlsx
file to disk containing multiple sheets of structured solution data.
Excel Output Includes¶
- Main: High-level metrics, objective value, choice counts, and performance indicators
- Objective Measures: AFSC scores for each weighted objective
- Constraint Fails: Constraint violations by AFSC
- Objective Values: Weighted performance per AFSC with visual scoring heatmaps
- Solution: Per-cadet assignment breakdown with preferences, utilities, base/course matches
- X, V, Q (optional): Assignment matrices for AFSCs, bases, and training courses
- Lambda, Y (optional): Value function parameters per AFSC and objective
- Castle Metrics (if applicable): Metrics for CASTLE-mode AFSCs
- Blocking Pairs (if present): Cadet-AFSC blocking violations
Notes¶
- Conditional formatting is applied to highlight preference rankings, merit scores, and match quality.
- The function handles presence or absence of optional components (e.g., base matching, training courses).
- Top 10 cadet choices and utilities are shown in the Solution tab for deeper preference analysis.
See Also¶
Source code in afccp/data/processing.py
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 |
|
draw_frame_border_outside(workbook, worksheet, first_row, first_col, rows_count, cols_count, color='#0000FF', width=2)
¶
Draws an outer border around a rectangular cell range using conditional formatting.
- Applies a frame to the specified region starting at (first_row, first_col) with size (rows_count x cols_count)
- Border color and width are customizable
- Assumes 0-based indexing and adjusts if row/column values are less than 1
Parameters¶
- workbook : xlsxwriter.Workbook
- worksheet : xlsxwriter.Worksheet
- first_row : int
- first_col : int
- rows_count : int
- cols_count : int
- color : str, default '#0000FF'
- width : int, default 2
Source code in afccp/data/processing.py
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 |
|