data.adjustments
¶
Data Adjustments Module for AFCCP¶
This module contains utility functions that perform critical adjustments, validations, and transformations
on the parameters
and vp_dict
dictionaries that define each problem instance in the AFCCP model.
The functions here serve as post-processing or pre-processing steps to ensure internal consistency, prepare data for model input, or apply specific business rules (such as OTS must-matches or degree tier qualification logic). They are commonly called after loading data or before solving a model.
Functions:¶
-
parameter_sanity_check(parameters)
Performs validation checks on parameters and value parameters to ensure modeling assumptions are satisfied. -
parameter_sets_additions(parameters)
Updates derived parameter sets (likeI^OTS
,I^USAF
,J^Rated
) based on core problem inputs. -
more_parameter_additions(parameters)
Adds further derived variables or flags used throughout the AFCCP model such as first-choice indicators. -
base_training_parameter_additions(parameters)
Adds data structures needed to support Base Training assignments for cadets. -
set_ots_must_matches(parameters)
Selects a subset of OTS cadets as "must-match" based on their merit and OTS accession targets. -
gather_degree_tier_qual_matrix(cadets_df, parameters)
Determines the qualification matrix for AFSC eligibility based on degree tier requirements. -
convert_instance_to_from_scrubbed(instance, new_letter=None, translation_dict=None, data_name='Unknown')
Converts instance AFSC names to "scrubbed" placeholders or restores them back to their original names for anonymized modeling and solution reproducibility.
parameter_sanity_check(instance)
¶
Perform a Full Sanity Check on Problem Instance Parameters.
This function performs a comprehensive audit of the problem instance's input data and value parameters to verify that all structures, matrices, and definitions are logically consistent and feasible. This includes checks on cadet eligibility, AFSC quotas, objective constraints, preference list coherence, utility monotonicity, and tiered qualification logic.
The goal is to prevent downstream issues during optimization by catching data errors or logical mismatches in advance. All checks are printed with contextual explanations and will highlight both errors and warnings when inconsistencies are found.
Parameters:¶
-
instance:
CadetCareerProblem
class instance An instantiated problem containing:parameters
: dictionaries and matrices representing cadets, AFSCs, preferences, and utility definitions.value_parameters
: constraints, objective targets, and value function metadata.
Returns:¶
- None: This function prints all identified issues to the console but does not return any values.
It may raise a
ValueError
ifvalue_parameters
are not initialized.
Examples:¶
from afccp.data.adjustments import parameter_sanity_check
parameter_sanity_check(instance)
This prints a series of diagnostics like:
- "ISSUE: AFSC '15A' quota constraint invalid: 12 (min) > 10 (eligible)"
- "WARNING: Cadet 41 has no preferences and is therefore eligible for nothing."
- "ISSUE: Value function breakpoints for AFSC '17X' objective 'Tier 2' are misaligned."
Source code in afccp/data/adjustments.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
|
parameter_sets_additions(parameters)
¶
Add Indexed Sets and Subsets to the Problem Instance Parameters.
This function enhances the problem instance by creating indexed sets and subsets for both cadets and AFSCs, demographic filters, eligibility matrices, preference-related metadata, and readiness for optimization. It also validates eligibility constraints and appends additional calculated data fields.
Parameters¶
parameters : dict The fixed model input parameters for a cadet-AFSC assignment instance, including eligibility matrices, cadet/AFSC attributes, utility matrices, and demographics.
Returns¶
Updated parameter dictionary with:
- Indexed cadet and AFSC sets:
I
,J
,J^E
,I^E
- Eligibility and preference counts:
num_eligible
,Choice Count
- Demographic and qualification subsets:
I^D
,I^USAFA
,I^Male
,I^Minority
, etc. - Assignment constraints:
J^Fixed
,J^Reserved
- Cadet and AFSC preference mappings
- Updated utility matrix with unmatched column
Examples¶
from afccp.data.adjustments import parameter_sets_additions
params = parameter_sets_additions(params)
Notes¶
- Automatically detects and processes USAFA/ROTC cadet splits based on
usafa
andsoc
columns. - Adds extra handling for cadets that are fixed to AFSCs via preassignments in
assigned
. - Includes support for rated cadets, STEM AFSCs, race/ethnicity filters, and eligibility-based breakouts.
See Also¶
more_parameter_additions
: Adds enhanced logic for cadet/AFSC matching, preference flattening, and diversity tracking.base_training_parameter_additions
: Adds base and training assignment structures to the parameters.
Source code in afccp/data/adjustments.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
|
more_parameter_additions(parameters)
¶
Add Additional Subsets and Parameter Structures to the Problem Instance.
This function enhances the problem instance by appending numerous structured subsets and derived attributes based on cadet preferences, eligibility, accession groupings, demographics, and more. It enriches the input parameter dictionary in preparation for detailed analysis and optimization.
Parameters¶
parameters : dict The initial problem instance dictionary, containing data on cadets, AFSCs, eligibility, utility matrices, etc.
Returns¶
dict The updated problem instance with additional fields, subsets, and derived variables including:
- Cadet and AFSC preferences
- Accessions group (Rated, USSF, NRL) AFSC indices
- Rated-specific cadet groupings and OM mapping
- Simpson index for race/ethnicity
- Groupings by SOC (e.g., ROTC, USAFA), gender, and STEM designation
- Subsets like
I^Must_Match
,J^Bottom 2 Choices
, etc.
Examples¶
parameters = more_parameter_additions(parameters)
Notes¶
The function performs a large number of conditional operations and appends dozens of new keys to parameters
.
These are used downstream in optimization and statistical evaluation of AFSC assignment plans.
See Also¶
parameter_sets_additions
: Related utility that adds indexed parameter sets post-preference generation.
Source code in afccp/data/adjustments.py
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
|
base_training_parameter_additions(parameters)
¶
Add Base and Training Parameters to the Problem Instance.
This function extends the parameter dictionary with the data structures required to support base assignments and training course scheduling within the CASTLE Base/Training optimization model. Each cadet is categorized into preference-based "states" depending on their AFSC priorities and base/course interest.
The function also calculates cadet-course availability, utility of wait times, and assignment eligibility across bases and courses. This enables simultaneous modeling of AFSC matches, base assignments, and training timelines.
Parameters¶
parameters : dict The problem instance parameters, including cadet preferences, AFSC eligibility, utility scores, training thresholds, and configuration flags for base/course logic.
Returns¶
dict Updated parameter dictionary with additional sets and matrices such as:
D
,Cadet Objectives
,J^State
,w^A
,w^B
,w^C
,u^S
: cadet state structures.B^A
,B^E
,B^State
: base assignment eligibility mappings.C^E
,I^A
,course_days_cadet
,course_utility
: training availability and utility values.lo^B
,hi^B
,lo^C
,hi^C
: quantity constraints on base/course assignments.
Examples¶
from afccp.data.adjustments import base_training_parameter_additions
parameters = base_training_parameter_additions(parameters)
Notes¶
- Cadet states are built using
base_threshold
andtraining_threshold
, which split cadet preferences into AFSCs only, AFSC + base, and AFSC + base + course states. - Utility from training courses is based on cadet preferences (
Early
,Late
,None
) and normalized start dates. - Course utility is scaled from 0 to 1, with utility decreasing/increasing with wait time as appropriate.
- This logic assumes all relevant arrays like
training_start
,course_start
,afsc_assign_base
, etc., exist and are preloaded in the parameter dictionary.
See Also¶
parameter_sets_additions
: Adds foundational indexed sets and preference structures used prior to base/training expansion.
Source code in afccp/data/adjustments.py
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 |
|
set_ots_must_matches(parameters)
¶
Identify OTS Candidates Who Must Be Matched in the Assignment.
This function determines which Officer Training School (OTS) cadets must be assigned (i.e., matched) by
identifying the top candidates based on their Order of Merit (OM) scores. It updates the must_match
array to indicate mandatory match requirements, and adds a new set I^Must_Match
containing the indices
of cadets who must be assigned a slot.
If OTS is not a participating source of commissioning (SOC) in the instance, the function exits early with no modifications.
Parameters:¶
- parameters (dict): Dictionary of model parameters, including cadet index sets (
I
,I^OTS
), merit scores, and SOC definitions.
Returns:¶
-
dict: The updated parameters dictionary with the following changes:
must_match
: N-length array with1
for must-match cadets,0
for others, andNaN
for non-OTS cadets.I^Must_Match
: Set of cadet indices inI^OTS
who are in the top ~99.5% of the OM distribution.
Examples:¶
parameters = set_ots_must_matches(parameters)
Source code in afccp/data/adjustments.py
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 |
|
gather_degree_tier_qual_matrix(cadets_df, parameters)
¶
Construct or Validate Degree Tier Qualification Matrix for Cadets.
This function analyzes the provided cadets_df
and parameters
to determine if a valid degree
qualification matrix (qual
) exists. If not, or if the format differs from the expected
"Tiers" structure, a new one is generated using CIP codes. It then computes a series of derived
binary matrices (e.g., eligible
, mandatory
, tier 1
, etc.) that describe cadet eligibility
for each AFSC based on degree requirements.
The degree tier qualification matrix is a critical part of the AFSC assignment model, influencing eligibility filtering, tier-based objective constraints, and value function evaluations.
Parameters:¶
- cadets_df (pd.DataFrame): The dataframe containing cadet qualification data. Must contain
columns like
qual_AFSC
or CIP fields if generating the qualification matrix. - parameters (dict): Instance parameter dictionary (
p
) that includes AFSCs, CIP codes, qualification type, and degree tier expectations. This dictionary will be modified in place.
Returns:¶
-
dict: Updated
parameters
dictionary with the following keys (if applicable):"qual"
: The constructed or validated NxM string matrix of qualification levels."eligible"
/"ineligible"
: Binary matrices indicating AFSC eligibility."mandatory"
/"desired"
/"permitted"
: Binary matrices based on tier requirements."tier 1"
to"tier 4"
: Tier-specific binary matrices."exception"
: Binary matrix marking cadets eligible through exception rules."t_count"
: Array of number of degree tiers per AFSC."t_proportion"
: Matrix with expected proportions for each tier per AFSC."t_eq"
/"t_geq"
/"t_leq"
: Binary matrices specifying how tier requirements should be interpreted.
Examples:¶
p = gather_degree_tier_qual_matrix(cadets_df, p)
See Also:¶
cip_to_qual_tiers
: Generates tier-based qualification matrix from CIP codes.
Source code in afccp/data/adjustments.py
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 |
|
convert_instance_to_from_scrubbed(instance, new_letter=None, translation_dict=None, data_name='Unknown')
¶
Convert Between Original and Scrubbed AFSC Names Based on PGL Sorting.
This function transforms a problem instance by reordering or restoring AFSC names based on their PGL targets. It is used to anonymize (scrub) AFSCs for publication or experimentation by replacing real AFSC identifiers with generic labels (e.g., "X1", "X2", ...) while preserving order. If a translation dictionary is provided, it performs the inverse operationβrestoring original AFSC names from their scrubbed versions.
The function updates all relevant AFSC-indexed matrices, arrays, and value parameters in the instance.
It also modifies the solution dictionary (instance.solutions
) and preference matrices to maintain consistency.
Parameters:¶
- instance (
CadetCareerProblem
): The full problem instance containing parameter and solution data. - new_letter (str, optional): A single letter (e.g.,
"X"
) to use as the prefix for scrubbed AFSC names. If provided, performs a forward conversion (real β scrubbed). - translation_dict (dict, optional): A mapping from real to scrubbed AFSC names. If provided and
new_letter
is None, performs a reverse conversion (scrubbed β real). - data_name (str, optional): A custom label to attach to the instance's
data_name
attribute.
Returns:¶
- tuple:
instance
(CadetCareerProblem
): The updated instance with renamed AFSCs and adjusted internal data.translation_dict
(dict): The mapping used for conversion (real β scrubbed).
Examples:¶
# Forward conversion (scrubbing AFSC names)
new_instance, afsc_mapping = convert_instance_to_from_scrubbed(instance, new_letter="X")
# Reverse conversion (restoring AFSC names)
original_instance, _ = convert_instance_to_from_scrubbed(new_instance, translation_dict=afsc_mapping)
Source code in afccp/data/adjustments.py
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 |
|